Exemple #1
0
        here_moon = use_moon[I]

    print('\n')
    print("\t--> Working on image: ", fsim)
    h             = pyfits.open(fsim)
    mjd,mjd0      = cafeutils.mjd_fromheader2(h)
    ronoise, gain = float(h[0].header['CCDRON']),float(h[0].header['CCDGAIN'])

    # Object name
    obname    = h[0].header['OBJECT']
    print("\t\tObject name:",obname)

    # Open file, trim, overscan subtract and MasterBias subtract
    data        = cafeutils.b_col(h[0].data)
    data        = cafeutils.OverscanTrim( data ) - MasterBias
    drift,c_new = GLOBALutils.get_drift(data,P,c_all,pii=1024,win=10)
    P_new       = GLOBALutils.shift_P(P,drift,c_new,ext_aperture)
    #print 'ydrift:',drift

    bacfile = dirout + 'BAC_' + fsim.split('/')[-1][:-4]+'fits'
    if os.access(bacfile,os.F_OK)==False:
        Centers = np.zeros((len(c_new),data.shape[1]))
        for i in range(nord):
            Centers[i,:]=scipy.polyval(c_new[i,:],np.arange(len(Centers[i,:])))
        bac = GLOBALutils.get_scat(data,Centers,span=7)
        if (os.access(bacfile,os.F_OK)):
            os.remove( bacfile )
        hdbac = pyfits.PrimaryHDU( bac )
        hdbac.writeto(bacfile)
    else:
        bac = pyfits.getdata(bacfile)
Exemple #2
0
    bkg_obj_fits = dirout + 'Bkg_' + nama + '.fits'
    obj_fits_simple = dirout + nama + '.spec.simple.fits.S'


    if ( os.access(obj_fits,os.F_OK) == False )  or \
       ( os.access(obj_fits_simple,os.F_OK) == False ) or \
       (force_sci_extract):
        print "\t\tNo previous extraction or extraction forced for science file", obj, "extracting..."

        dat = pyfits.getdata(obj).astype('float')
        dat -= MasterBias
        if len(MasDarl) > 0 and dark_corr:
            dat -= pucherosutils.get_dark(MasDarl, hd['EXPTIME'])
        dat = dat.T

        drift, c_new = GLOBALutils.get_drift(dat, P, c_all, pii=512, win=5)
        print '\t\ty drift:', drift

        P_new = GLOBALutils.shift_P(P, drift, c_new, ext_aperture)

        if back_corr:
            Centers = np.zeros((len(c_new), dat.shape[1]))
            for i in range(c_new.shape[0]):
                Centers[i, :] = scipy.polyval(c_new[i, :],
                                              np.arange(len(Centers[i, :])))
            bac = GLOBALutils.get_scat(dat, Centers, span=5, allow_neg=True)
            dat -= bac

        if not have_flat:
            P_new = GLOBALutils.obtain_P(dat,c_new,ext_aperture,RON,\
                                             GAIN,NSigma_Marsh, S_Marsh, \