Exemple #1
0
def seeotheritems():  #7second delay
    global taskfe
    global a
    global task
    global yolonum
    global anchor
    classes = [
        'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat',
        'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person',
        'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'
    ]
    anchored = (1.08, 1.19, 3.42, 4.41, 6.63, 11.38, 9.42, 5.11, 16.62, 10.52)
    kpu.deinit(taskfe)
    kpu.deinit(task)
    tasktw = kpu.load("/sd/model/20class.kmodel")
    uart_B.write(" loaded 20 ")
    kpu.init_yolo2(tasktw, 0.5, 0.3, 5, anchored)
    imgother = sensor.snapshot()
    imgother.pix_to_ai()
    detectcode = kpu.run_yolo2(tasktw, imgother)
    if detectcode:
        led_r.value(0)
        led_b.value(0)
        for i in detectcode:
            imgother = imgother.draw_rectangle(i.rect())
            for i in detectcode:
                imgother = imgother.draw_string(i.x(),
                                                i.y(),
                                                str(classes[i.classid()]),
                                                color=(255, 250, 250))
                imgother = imgother.draw_string(i.x(),
                                                i.y() + 12,
                                                '%f1.3' % i.value(),
                                                color=(255, 250, 250))
                imgother.save("/sd/yoloimages/" + str(yolonum) + ".jpg",
                              quality=70)
                utime.sleep_ms(50)
                yolonum += 1
                uart_B.write(" |Yolo|> " + str(classes[i.classid()]) + " <||")
                f = open("/sd/printoutput.txt", "a+")
                f.write("Yolo detected: " + str(classes[i.classid()]) + "\n\r")
                f.close()
    del (imgother)
    kpu.deinit(tasktw)
    del (tasktw)
    gc.collect()
    uart_B.write(" killed ")
    task = kpu.load("/sd/facedetect.kmodel")
    taskfe = kpu.load("/sd/model/FE.smodel")
    utime.sleep_ms(10)
    led_r.value(1)
    led_b.value(1)
    kpu.init_yolo2(task, 0.5, 0.3, 5, anchor)
    uart_B.write(" restarted ")
Exemple #2
0
 def load():
     if FaceReco.is_load == False:
         FaceReco.model = kpu.load(0x2C0000)  # Load Model File from Flash
         # Anchor data is for bbox, extracted from the training sets.
         kpu.init_yolo2(FaceReco.model, 0.5, 0.3, 5, (1.889, 2.5245, 2.9465, 3.94056, 3.99987,
           5.3658, 5.155437, 6.92275, 6.718375, 9.01025))
         FaceReco.is_load = True
def main(model_addr=0x300000, lcd_rotation=0, sensor_hmirror=False, sensor_vflip=False):
    sensor.reset()
    sensor.set_pixformat(sensor.RGB565)
    sensor.set_framesize(sensor.QVGA)
    sensor.set_hmirror(sensor_hmirror)
    sensor.set_vflip(sensor_vflip)
    sensor.run(1)

    lcd.init(type=1)
    lcd.rotation(lcd_rotation)
    lcd.clear(lcd.WHITE)

    task = kpu.load(model_addr)
    anchors = (1.889, 2.5245, 2.9465, 3.94056, 3.99987, 5.3658, 5.155437, 6.92275, 6.718375, 9.01025)
    kpu.init_yolo2(task, 0.5, 0.3, 5, anchors) # threshold:[0,1], nms_value: [0, 1]
    try:
        while(True):
            img = sensor.snapshot()
            t = time.ticks_ms()
            objects = kpu.run_yolo2(task, img)
            t = time.ticks_ms() - t
            if objects:
                for obj in objects:
                    img.draw_rectangle(obj.rect())
            img.draw_string(0, 200, "t:%dms" %(t), scale=2)
            lcd.display(img)
    except Exception as e:
        sys.print_exception(e)
    finally:
        kpu.deinit(task)
Exemple #4
0
 def __init__(self,
              out_range=10,
              ignore_limit=0.02,
              hmirror=False,
              vflip=False,
              lcd_rotation=2,
              lcd_mirror=True):
     self.pitch = 0
     self.roll = 0
     self.out_range = out_range
     self.ignore = ignore_limit
     self.task_fd = kpu.load(0x300000)  # face model addr in flash
     anchor = (1.889, 2.5245, 2.9465, 3.94056, 3.99987, 5.3658,
               5.155437, 6.92275, 6.718375, 9.01025)
     kpu.init_yolo2(self.task_fd, 0.5, 0.3, 5, anchor)
     lcd.init()
     lcd.rotation(lcd_rotation)
     lcd.mirror(lcd_mirror)
     sensor.reset()
     sensor.set_pixformat(sensor.RGB565)
     sensor.set_framesize(sensor.QVGA)
     if hmirror:
         sensor.set_hmirror(1)
     if vflip:
         sensor.set_vflip(1)
    def __lazy_init(self):
        err_counter = 0

        while 1:
            try:
                sensor.reset()  # Reset sensor may failed, let's try sometimes
                break
            except Exception:
                err_counter = err_counter + 1
                if err_counter == 20:
                    lcd.draw_string(lcd.width() // 2 - 100,
                                    lcd.height() // 2 - 4,
                                    "Error: Sensor Init Failed", lcd.WHITE,
                                    lcd.RED)
                time.sleep(0.1)
                continue
        print("progress 1 OK!")
        sensor.set_pixformat(sensor.RGB565)
        sensor.set_framesize(sensor.QVGA)  # QVGA=320x240
        sensor.run(1)

        print("progress 2 OK!")
        self.task = kpu.load(0x300000)  # Load Model File from Flash
        anchor = (1.889, 2.5245, 2.9465, 3.94056, 3.99987, 5.3658, 5.155437,
                  6.92275, 6.718375, 9.01025)
        # Anchor data is for bbox, extracted from the training sets.
        print("progress 3 OK!")
        kpu.init_yolo2(self.task, 0.5, 0.3, 5, anchor)

        self.but_stu = 1

        self.__initialized = True
Exemple #6
0
def main(labels=None,
         model_addr="/sd/m.kmodel",
         sensor_window=(224, 224),
         lcd_rotation=0,
         sensor_hmirror=False,
         sensor_vflip=False):
    sensor.reset()
    sensor.set_pixformat(sensor.RGB565)
    sensor.set_framesize(sensor.QVGA)
    sensor.set_windowing(sensor_window)
    sensor.set_hmirror(sensor_hmirror)
    sensor.set_vflip(sensor_vflip)
    sensor.run(1)

    lcd.init(type=1)
    lcd.rotation(lcd_rotation)
    lcd.clear(lcd.WHITE)

    if not labels:
        with open('labels.txt', 'r') as f:
            exec(f.read())
    if not labels:
        print("no labels.txt")
        img = image.Image(size=(320, 240))
        img.draw_string(90, 110, "no labels.txt", color=(255, 0, 0), scale=2)
        lcd.display(img)
        return 1
    try:
        img = image.Image("startup.jpg")
        lcd.display(img)
    except Exception:
        img = image.Image(size=(320, 240))
        img.draw_string(90,
                        110,
                        "loading model...",
                        color=(255, 255, 255),
                        scale=2)
        lcd.display(img)

    task = kpu.load(model_addr)

    try:
        while (True):
            img = sensor.snapshot()
            t = time.ticks_ms()
            fmap = kpu.forward(task, img)
            t = time.ticks_ms() - t
            plist = fmap[:]
            pmax = max(plist)
            max_index = plist.index(pmax)
            img.draw_string(0,
                            0,
                            "%.2f : %s" % (pmax, labels[max_index].strip()),
                            scale=2)
            img.draw_string(0, 200, "t:%dms" % (t), scale=2)
            lcd.display(img)
    except Exception as e:
        raise e
    finally:
        kpu.deinit(task)
    def __init__(self, categoryname=[], samplesnumber=15, bool=False):
        self.row = global_value.row
        global_value.row = global_value.row + 1
        try:
            del self.model
        except Exception:
            pass
        try:
            del self.classifier
        except Exception:
            pass

        self.classnumber = len(categoryname)
        self.samplesnumber = samplesnumber
        self.categoryname = categoryname
        self.img_copy = None
        self.cap_num = 0
        self.train_status = 0
        self.class_list = []
        self.percent = 0
        self.image_class = 0

        if bool:
            self.model = kpu.load(0x514000)
            self.classifier = kpu.classifier(self.model, self.classnumber,
                                             self.samplesnumber)
        else:
            pass
Exemple #8
0
    def __init__(self, detector):

        self.object_detected = None
        self.FaceDetector = detector
        self.landmark_task = kpu.load(0x6BD000)

        a = kpu.set_outputs(self.landmark_task, 0, 1, 1, 10)
Exemple #9
0
 def load():
     if MaybeIs.is_load == False:
         #print(MaybeIs.load)
         MaybeIs.task = kpu.load(0x5C0000)
         #task = kpu.load("/sd/0x5C0000_20class.kmodel")
         kpu.init_yolo2(MaybeIs.task, 0.5, 0.3, 5, (1.889, 2.5245, 2.9465, 3.94056, 3.99987, 5.3658, 5.155437, 6.92275, 6.718375, 9.01025))
         MaybeIs.is_load = True
 def load_model_file(self, filename=''):
     self.model = kpu.load(0x514000)
     classifier = kpu.classifier.load(self.model, filename)
     self.classifier = classifier[0]
     f = open(filename.split('.')[0] + '.names', 'r')
     self.class_list = ujson.loads(f.read())
     #print(self.class_list)
     f.close()
Exemple #11
0
 def load():
     if MoblieNet.is_load == False:
         #print(MoblieNet.load)
         MoblieNet.task = kpu.load(0x720000)
         #task = kpu.load("/sd/0x720000_mbnet75.kmodel")
         with open(os.getcwd() + '/res/labels.txt', 'r') as f:
         #with open('labels.txt', 'r') as f:
             MoblieNet.labels = f.readlines()
         MoblieNet.is_load = True
Exemple #12
0
    def load():
        if FaceReco.is_load == False:
            FaceReco.task_fd = kpu.load(0x2C0000)
            FaceReco.task_ld = kpu.load(0x580000)
            FaceReco.task_fe = kpu.load(0x340000)

            a = kpu.init_yolo2(FaceReco.task_fd, 0.5, 0.3, 5, anchor)

            FaceReco.img_face = image.Image(size=(128, 128))
            a = FaceReco.img_face.pix_to_ai()

            FaceReco.start_processing = False

            from Maix import GPIO
            button_io.home_button.irq(
                FaceReco.set_key_state, GPIO.IRQ_RISING, GPIO.WAKEUP_NOT_SUPPORT)

            FaceReco.is_load = True
Exemple #13
0
 def __init__(self):
     self._m_fd = kpu.load(0x200000)
     self._m_ld = kpu.load(0x300000)
     self._m_fe = kpu.load(0x400000)
     self._anchor = (1.889, 2.5245, 2.9465, 3.94056, 3.99987, 5.3658,
                     5.155437, 6.92275, 6.718375, 9.01025)
     self._dst_point = [(44, 59), (84, 59), (64, 82), (47, 105), (81, 105)]
     self.names = []
     self.features = []
     _ = kpu.init_yolo2(self._m_fd, 0.5, 0.3, 5, self._anchor)
     self.img_face = image.Image(size=(128, 128))
     _ = self.img_face.pix_to_ai()
     sensor.reset()
     sensor.set_pixformat(sensor.RGB565)
     sensor.set_framesize(sensor.QVGA)
     # sensor.set_hmirror(1)
     sensor.set_vflip(1)
     self.show_img_timeout = 5
     self._show_img_t = -5
Exemple #14
0
def main(anchors, labels=None, model_addr="/sd/m.kmodel"):
    sensor.reset()
    sensor.set_pixformat(sensor.RGB565)
    sensor.set_framesize(sensor.QVGA)
    sensor.set_windowing((224, 224))
    sensor.run(1)

    lcd.init(type=1)
    lcd.clear(lcd.WHITE)

    if not labels:
        with open('labels.txt', 'r') as f:
            exec(f.read())
    if not labels:
        print("no labels.txt")
        img = image.Image(size=(320, 240))
        img.draw_string(90, 110, "no labels.txt", color=(255, 0, 0), scale=2)
        lcd.display(img)
        return 1
    try:
        img = image.Image("startup.jpg")
        lcd.display(img)
    except Exception:
        img = image.Image(size=(320, 240))
        img.draw_string(90,
                        110,
                        "loading model...",
                        color=(255, 255, 255),
                        scale=2)
        lcd.display(img)

    task = kpu.load(model_addr)
    kpu.init_yolo2(task, 0.5, 0.3, 5,
                   anchors)  # threshold:[0,1], nms_value: [0, 1]
    try:
        while (True):
            img = sensor.snapshot()
            t = time.ticks_ms()
            objects = kpu.run_yolo2(task, img)
            t = time.ticks_ms() - t
            if objects:
                for obj in objects:
                    pos = obj.rect()
                    img.draw_rectangle(pos)
                    img.draw_string(pos[0],
                                    pos[1],
                                    "%s : %.2f" %
                                    (labels[obj.classid()], obj.value()),
                                    scale=2)
            img.draw_string(0, 200, "t:%dms" % (t), scale=2)
            lcd.display(img)
    except Exception as e:
        sys.print_exception(e)
    finally:
        kpu.deinit(task)
 def __init__(self, FileName, Label, bool=False):
     self.row = global_value.row
     global_value.row = global_value.row + 1
     self.percent = 0
     self.image_class = 0
     self.file_name = FileName
     self.labels = Label
     if bool:
         self.image_objects_task = kpu.load(self.file_name)
         a = kpu.set_outputs(self.image_objects_task, 0, 1, 1,
                             len(self.labels))
     else:
         pass
Exemple #16
0
def init_kpu(threshold=0.3):
    classes = ["person"]
    task = kpu.load(
        0x300000
    )  #change to "/sd/name_of_the_model_file.kmodel" if loading from SD card
    a = kpu.set_outputs(
        task, 0, 7, 7, 30
    )  #the actual shape needs to match the last layer shape of your model(before Reshape)
    anchor = (0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282,
              3.52778, 9.77052, 9.16828)
    a = kpu.init_yolo2(
        task, threshold, 0.3, 5, anchor
    )  #tweak the second parameter if you're getting too many false positives
    return task
Exemple #17
0
    def __init__(self):

        self.object_detected = None
        self.percent = 0

        self.classes = ['face']
        self.anchor = (1.889, 2.5245, 2.9465, 3.94056, 3.99987, 5.3658,
                       5.155437, 6.92275, 6.718375, 9.01025)
        self.x_center = 0
        self.y_center = 0

        self.object_detection_task = kpu.load(0x659000)
        a = kpu.set_outputs(self.object_detection_task, 0, 7, 7, 30)
        a = kpu.init_yolo2(self.object_detection_task, 0.1, 0.1, 5,
                           self.anchor)
Exemple #18
0
def measure_fps(model_file):
    task = kpu.load(model_file)
    kpu.set_outputs(task, 0, 1, 1, 2)
    clock = time.clock()
    fps_ = []
    for i in range(20):
        img = sensor.snapshot()
        clock.tick()
        fmap = kpu.forward(task, img)
        lcd.display(img, oft=(0, 0))
        fps_.append(clock.fps())
    average_fps = sum(fps_) / len(fps_)
    print(average_fps)
    global fps_result
    fps_result = average_fps
    _ = kpu.deinit(task)
Exemple #19
0
def Init_Task():
    global labels
    global objects
    objects = kpu.load("/sd/laji.kmodel")
    f = open("anchors.txt", "r")
    anchor_txt = f.read()
    L = []
    for i in anchor_txt.split(","):
        L.append(float(i))
    anchor = tuple(L)
    f.close()
    a = kpu.init_yolo2(objects, 0.6, 0.3, 5, anchor)
    f = open("classes.txt", "r")
    labels_txt = f.read()
    labels = labels_txt.split(",")
    f.close()
Exemple #20
0
def inference(model_file):
    task = kpu.load(model_file)
    kpu.set_outputs(task, 0, 1, 1, 2)
    clock = time.clock()
    while (True):
        img = sensor.snapshot()
        clock.tick()
        fmap = kpu.forward(task, img)
        fps = clock.fps()
        plist = fmap[:]
        pmax = max(plist)
        max_index = plist.index(pmax)
        a = lcd.display(img, oft=(0, 0))
        lcd.draw_string(
            0, 128, "%.2f:%s                            " %
            (pmax, labels[max_index].strip()))
    _ = kpu.deinit(task)
Exemple #21
0
def measure_latency(model_file):
    task = kpu.load(model_file)
    kpu.set_outputs(task, 0, 1, 1, 2)
    clock = time.clock()
    latency_ = []
    for i in range(20):
        img = sensor.snapshot()
        clock.tick()
        t1 = time.ticks_us()
        fmap = kpu.forward(task, img)
        t2 = time.ticks_diff(time.ticks_us(), t1) / 1000
        lcd.display(img, oft=(0, 0))
        latency_.append(t2)
    average_latency = sum(latency_) / len(latency_)
    print(average_latency)
    global latency_result
    latency_result = average_latency
    _ = kpu.deinit(task)
Exemple #22
0
 def __init__(self, FileName, Classes, Anchor, bool=False):
     self.row = global_value.row
     global_value.row = global_value.row + 1
     self.object_detected = None
     self.percent = 0
     self.file_name = FileName
     self.classes = Classes
     self.anchor = Anchor
     self.x_center = 0
     self.y_center = 0
     if bool:
         self.object_detected_task = kpu.load(self.file_name)
         a = kpu.set_outputs(self.object_detected_task, 0, 7, 7,
                             5 * (5 + len(self.classes)))
         a = kpu.init_yolo2(self.object_detected_task, 0.1, 0.3, 5,
                            self.anchor)
     else:
         pass
def find_face():
    lcd.init()
    sensor.reset()
    sensor.set_pixformat(sensor.RGB565)
    sensor.set_framesize(sensor.QVGA)
    sensor.set_vflip(1)
    sensor.run(1)
    task = kpu.load(0x300000)
    anchor = (1.889, 2.5245, 2.9465, 3.94056, 3.99987, 5.3658, 5.155437,
              6.92275, 6.718375, 9.01025)
    kpu.init_yolo2(task, 0.5, 0.3, 5, anchor)
    while (True):
        img = sensor.snapshot()
        code = kpu.run_yolo2(task, img)
        if code:
            for i in code:
                img.draw_rectangle(i.rect())
        lcd.display(img)
    kpu.deinit(task)
Exemple #24
0
def main(model_addr=0x300000,
         lcd_rotation=0,
         sensor_hmirror=False,
         sensor_vflip=False):
    try:
        sensor.reset()
    except Exception as e:
        raise Exception(
            "sensor reset fail, please check hardware connection, or hardware damaged! err: {}"
            .format(e))
    sensor.set_pixformat(sensor.RGB565)
    sensor.set_framesize(sensor.QVGA)
    sensor.set_hmirror(sensor_hmirror)
    sensor.set_vflip(sensor_vflip)
    sensor.run(1)

    lcd.init(type=1)
    lcd.rotation(lcd_rotation)
    lcd.clear(lcd.WHITE)

    anchors = (1.889, 2.5245, 2.9465, 3.94056, 3.99987, 5.3658, 5.155437,
               6.92275, 6.718375, 9.01025)
    try:
        task = None
        task = kpu.load(model_addr)
        kpu.init_yolo2(task, 0.5, 0.3, 5,
                       anchors)  # threshold:[0,1], nms_value: [0, 1]
        while (True):
            img = sensor.snapshot()
            t = time.ticks_ms()
            objects = kpu.run_yolo2(task, img)
            t = time.ticks_ms() - t
            if objects:
                for obj in objects:
                    img.draw_rectangle(obj.rect())
            img.draw_string(0, 200, "t:%dms" % (t), scale=2)
            lcd.display(img)
    except Exception as e:
        raise e
    finally:
        if not task is None:
            kpu.deinit(task)
Exemple #25
0
    def __init__(self, lm_detector):

        self.id = -1
        self.max_score = 0
        self.threshold = 85
        self.LandmarkDetector = lm_detector

        self.db = _read_db()
        offset_x = 0
        offset_y = -15
        self.dst_point = [(44 + offset_x, 59 + offset_y),
                          (84 + offset_x, 59 + offset_y),
                          (64 + offset_x, 82 + offset_y), (47 + offset_x, 105),
                          (81 + offset_x, 105)]

        self.img_face = image.Image(size=(128, 128))
        a = self.img_face.pix_to_ai()

        self.fe_task = kpu.load(0x708000)
        a = kpu.set_outputs(self.fe_task, 0, 1, 1, 128)
Exemple #26
0
def _resetTask():
    global g_selCnt
    global g_cFiler
    global g_task

    info = g_cFiler.getInfoList()[g_selCnt]
    fullPath = info.dirName + '/' + info.modelName
    fullPath = '/sd/models/' + fullPath + '.kmodel'
    try:
        g_task = kpu.load(fullPath)
        if (info.modelType == 'yolo2'):
            anchor = (1.889, 2.5245, 2.9465, 3.94056, 3.99987, 5.3658,
                      5.155437, 6.92275, 6.718375, 9.01025)
            # Anchor data is for bbox, extracted from the training sets.
            kpu.init_yolo2(g_task, 0.5, 0.3, 5, anchor)
    except:
        lcd.draw_string(0, 20, "Err:" + info.modelName + " not find.",
                        lcd.WHITE, lcd.RED)
        g_task = None

    return g_task
Exemple #27
0
def checkCamera():
    global x, y
    x = 0
    y = 0
    showInfo("camera starting", True)
    img = image.Image()
    try:
        sensor.reset()
        sensor.set_pixformat(sensor.RGB565)
        sensor.set_framesize(sensor.QVGA)
        sensor.skip_frames(time=2000)
        lcd.rotation(2)
    except:
        showInfo("camera init failed", False)
        return
    else:
        showInfo("camera init done", True)

    try:
        task = kpu.load(0x300000)
        anchor = (1.889, 2.5245, 2.9465, 3.94056, 3.99987, 5.3658, 5.155437,
                  6.92275, 6.718375, 9.01025)
        a = kpu.init_yolo2(task, 0.5, 0.3, 5, anchor)
        while True:
            img = sensor.snapshot()
            code = kpu.run_yolo2(task, img)
            if code:
                for i in code:
                    a = img.draw_rectangle(i.rect(), color=lcd.BLUE)
            new = img.copy(roi=(0, 0, 239, 239))
            lcd.display(new)
    except:
        print('kup load fialed')
        while True:
            img = sensor.snapshot()
            new = img.copy(roi=(0, 0, 239, 239))
            lcd.display(new)
Exemple #28
0
def main(labels = None, model_addr="/sd/m.kmodel", lcd_rotation=0, sensor_hmirror=False, sensor_vflip=False):
    gc.collect()

    sensor.reset()
    sensor.set_pixformat(sensor.RGB565)
    sensor.set_framesize(sensor.QVGA)
    sensor.set_windowing((224, 224))
    sensor.set_hmirror(sensor_hmirror)
    sensor.set_vflip(sensor_vflip)
    sensor.run(1)

    lcd.init(type=1)
    lcd.rotation(lcd_rotation)
    lcd.clear(lcd.WHITE)

    if not labels:
        raise Exception("no labels.txt")

    task = kpu.load(model_addr)

    try:
        while(True):
            img = sensor.snapshot()
            t = time.ticks_ms()
            fmap = kpu.forward(task, img)
            t = time.ticks_ms() - t
            plist=fmap[:]
            pmax=max(plist) 
            max_index=plist.index(pmax)
            img.draw_string(0,0, "%.2f\n%s" %(pmax, labels[max_index].strip()), scale=2, color=(255, 0, 0))
            img.draw_string(0, 200, "t:%dms" %(t), scale=2, color=(255, 0, 0))
            lcd.display(img)
    except Exception as e:
        sys.print_exception(e)
    finally:
        kpu.deinit(task)
#tested with frimware 5-0.22
import sensor,image,lcd
import KPU as kpu

lcd.init()
sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.set_windowing((224, 224))
sensor.set_vflip(1)
sensor.run(1)
classes = ["racoon"]
task = kpu.load(0x200000) #change to "/sd/name_of_the_model_file.kmodel" if loading from SD card
a = kpu.set_outputs(task, 0, 7,7,30)   #the actual shape needs to match the last layer shape of your model(before Reshape)
anchor = (0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828)
a = kpu.init_yolo2(task, 0.3, 0.3, 5, anchor) #tweak the second parameter if you're getting too many false positives
while(True):
    img = sensor.snapshot().rotation_corr(z_rotation=90.0)
    a = img.pix_to_ai()
    code = kpu.run_yolo2(task, img)
    if code:
        for i in code:
            a=img.draw_rectangle(i.rect(),color = (0, 255, 0))
            a = img.draw_string(i.x(),i.y(), classes[i.classid()], color=(255,0,0), scale=3)
        a = lcd.display(img)
    else:
        a = lcd.display(img)
a = kpu.deinit(task)
Exemple #30
0
import sensor, image, lcd, utime  # import 相关库
from fpioa_manager import *
import KPU as kpu
import time, uos
from Maix import FPIOA, GPIO
from fpioa_manager import fm, board_info
from Maix import GPIO
from machine import UART
task_fd = kpu.load(0x200000)  # 从flash 0x200000 加载人脸检测模型
task_ld = kpu.load(0x300000)  # 从flash 0x300000 加载人脸五点关键点检测模型
task_fe = kpu.load(0x400000)  # 从flash 0x400000 加载人脸196维特征值模型
clock = time.clock()  # 初始化系统时钟,计算帧率
key_pin = 16  # 设置按键引脚 FPIO16
fpioa = FPIOA()
fpioa.set_function(key_pin, FPIOA.GPIO7)
key_gpio = GPIO(GPIO.GPIO7, GPIO.IN)
last_key_state = 1
key_pressed = 0  # 初始化按键引脚 分配GPIO7 到 FPIO16


def check_key():  # 按键检测函数,用于在循环中检测按键是否按下,下降沿有效
    global last_key_state
    global key_pressed
    val = key_gpio.value()
    if last_key_state == 1 and val == 0:
        key_pressed = 1
    else:
        key_pressed = 0
    last_key_state = val