def main(): (x, y) = LSM.data() (xwn, ywn) = LSM.data(Noise=True) lsm = LSM.LSM_L2(6) lsm.fit(x, y) lsm2 = LSM.LSM_L2(6) lsm2.fit(xwn, ywn) tics = 2 * pi * arange(0, 1, 0.02) lw = 5 #line width plt.subplot(211) plt.legend() plt.plot(x, y, 'ro', ms=10) plt.plot(tics, sin(tics), linewidth=lw, label="sin") plt.plot(tics, lsm.predict(tics), linewidth=lw, label="fitting") plt.legend(loc='lower right') plt.subplot(212) plt.xlim(0, 2 * pi) plt.ylim(-2, 2) plt.legend() plt.plot(xwn, ywn, 'ro', ms=10) plt.plot(tics, sin(tics), linewidth=lw, label="sin") plt.plot(tics, lsm2.predict(tics), linewidth=lw, label="fitting") plt.legend(loc='lower right') plt.show()
def main(): (x, y) = LSM.data() (xwn, ywn) = LSM.data(Noise=True, NL=0.3, N=10) lsm = LSM.LSM_L2(M=7, l=2.) tics = 2 * pi * arange(0, 1, 0.02) lw = 5 #line width ls = array([0.0, 0.1, 10, 100]) print(ls) for idcs in range(len(ls)): plt.subplot(len(ls), 1, idcs + 1) plt.xlim(0, 2 * pi + 2) plt.ylim(-2, 2) plt.legend() plt.plot(xwn, ywn, 'ro', ms=10) plt.plot(tics, sin(tics), linewidth=lw, label="sin") lsm.l = ls[idcs] lsm.fit(xwn, ywn) plt.plot(tics, lsm.predict(tics), linewidth=lw, label='l={:.1}'.format(ls[idcs])) plt.legend(loc='lower right') plt.show()