Exemple #1
0
def source_list(ns):
    # figure out spectral index parameters
    if spectral_index is not None:
        spi_def = Meow.Parm(spectral_index)
        freq0_def = ref_freq
    else:
        spi_def = freq0_def = None
    if spectral_index1 is not None:
        spi_def1 = Meow.Parm(spectral_index1)
        freq0_def1 = ref_freq
    else:
        spi_def1 = freq0_def1 = None
    # and flux parameters
    i_def = Meow.Parm(1)
    quv_def = Meow.Parm(0)

    dir1 = Meow.Direction(ns, "3C343.1", 4.356645791155902, 1.092208429052697)
    dir0 = Meow.Direction(ns, "3C343", 4.3396003966265599, 1.0953677174056471)

    src1 = Meow.PointSource(ns,
                            "3C343.1",
                            dir1,
                            I=Meow.Parm(6.02061051),
                            Q=Meow.Parm(0.0179716185),
                            U=quv_def,
                            V=quv_def,
                            spi=spi_def1,
                            freq0=freq0_def1)
    src0 = Meow.PointSource(ns,
                            "3C343",
                            dir0,
                            I=Meow.Parm(1.83336309),
                            Q=Meow.Parm(0.0241450607),
                            U=quv_def,
                            V=quv_def,
                            spi=spi_def1,
                            freq0=freq0_def1)

    ## define a parmgroup for source parameters
    pg_src = ParmGroup.ParmGroup("source",
                                 src1.coherency().search(tags="solvable") +
                                 src0.coherency().search(tags="solvable"),
                                 table_name="sources.mep")

    ParmGroup.SolveJob("cal_sources", "Calibrate sources", pg_src)

    return [src1, src0]
def compute_jones(Jones,
                  sources,
                  stations=None,
                  inspectors=[],
                  meqmaker=None,
                  label='R',
                  **kw):
    """Creates the Z Jones for ionospheric phase, given TECs (per source, 
  per station)."""
    stations = stations or Context.array.stations
    ns = Jones.Subscope()

    # get reference source
    if ref_source:
        # treat as index first
        dir0 = None
        try:
            dir0 = sources[int(ref_source)].direction
        except:
            pass
        # else treat as name, find in list
        if not dir0:
            for src0 in sources:
                if src0.name == ref_source:
                    dir0 = src0.direction
                    break
        # else treat as direction string
        if not dir0:
            ff = list(ref_source.split())
            if len(ff) < 2 or len(ff) > 3:
                raise RuntimeError(
                    "invalid reference dir '%s' specified for %s-Jones" %
                    (ref_source, label))
            global dm
            if not dm:
                raise RuntimeError(
                    "pyrap measures module not available, cannot use direction strings for %s-Jones"
                    % label)
            if len(ff) == 2:
                ff = ['J2000'] + ff
            # treat as direction measure
            try:
                dmdir = dm.direction(*ff)
            except:
                raise RuntimeError(
                    "invalid reference dir '%s' specified for %s-Jones" %
                    (ref_source, label))
            # convert to J2000 and make direction object
            dmdir = dm.measure(dmdir, 'J2000')
            ra, dec = dm.getvalue(dmdir)[0].get_value(), dm.getvalue(
                dmdir)[1].get_value()
            dir0 = Meow.Direction(ns, "refdir", ra, dec, static=True)
    else:
        dir0 = Context.observation.phase_centre

    # make refraction scale node
    scale = ns.scale(0) << Meq.Parm(0, tags="refraction")

    xyz0 = Context.array.xyz0()
    if coord_approx:
        # get PA, and assume it's the same over the whole field
        pa = ns.pa0 << Meq.ParAngle(dir0.radec(), xyz0)
        # second column of the Rot(-PA) matrix. Multiply this by del to get a rotation of (0,del) into the lm plane.
        # The third component (0) is for convenience, as it immediately gives us dl,dm,dn, since we assume dn~0
        rot_pa = ns.rotpa0 << Meq.Composer(Meq.Sin(pa), Meq.Cos(pa), 0)

    # el0: elevation of field centre
    el0 = dir0.el()
    if do_extinction:
        ns.inv_ext0 << Meq.Sin(el0)
        # inverse of extinction towards el0
    # station UVWs
    uvw = Context.array.uvw()
    # now loop over sources
    for isrc, src in enumerate(sources):
        # reference direction: no refraction at all
        if src.direction is dir0:
            for p in stations:
                Jones(src, p) << 1
            continue
        # dEl is source elevation minus el0
        # ddEl = scale*dEl: amount by which source refracts (negative means field is compressed)
        el = src.direction.el()
        ns.dEl(src) << el - el0
        ddel = ns.ddEl(src) << ns.dEl(src) * scale
        # get el1: refracted elevation angle
        if not coord_approx or do_extinction:
            el1 = ns.el1(src) << el + ddel
        # compute extinction component
        if do_extinction:
            # compute inverse of extinction towards the refracted direction el1
            iext = ns.inv_ext(src) << Meq.Sin(el1)
            #
            # and differential extinction is then ext1/ext0
            ext = ns.dext(src) << ns.inv_ext0 / iext
        # Compute dlmn offset in lm plane.
        if coord_approx:
            # Approximate mode: ddel is added to elevation, so to get the lm offset, we need
            # to apply Rot(PA) to the column vector (0,ddel), and then take the sine of the result.
            dlmn = ns.dlmn(src) << Meq.Sin(ddel * rot_pa)
        else:
            ns.azel1(src) << Meq.Composer(src.direction.az(), el1)
            ns.radec1(src) << Meq.RADec(ns.azel1(src), xyz0)
            ns.lmn1(src) << Meq.LMN(Context.observation.radec0(),
                                    ns.radec1(src))
            dlmn = ns.dlmn(src) << ns.lmn1(src) - src.lmn()
        # get per-station phases
        for p in stations:
            if do_extinction:
                Jones(src, p) << ext * (ns.phase(src, p) << Meq.VisPhaseShift(
                    lmn=dlmn, uvw=uvw(p)))
            else:
                Jones(src, p) << Meq.VisPhaseShift(lmn=dlmn, uvw=uvw(p))
    # make bookmarks
    srcnames = [src.name for src in sources]
    meqmaker.make_bookmark_set(Jones, [(src, p) for src in srcnames
                                       for p in stations],
                               "%s: inspector plot" % label,
                               "%s: by source-station" % label,
                               freqmean=True)
    inspectors.append(ns.inspector(label,'scale') << \
        StdTrees.define_inspector(ns.scale,[0],label=label))
    inspectors.append(ns.inspector(label,'delta-el') << \
        StdTrees.define_inspector(ns.ddEl,srcnames,label=label))
    inspectors.append(ns.inspector(label,'delta-el') << \
        StdTrees.define_inspector(ns.ddEl,srcnames,label=label))
    inspectors.append(ns.inspector(label,'dlmn') << \
        StdTrees.define_inspector(ns.dlmn,srcnames,label=label))
    if do_extinction:
        inspectors.append(ns.inspector(label,'inv-ext') << \
            StdTrees.define_inspector(ns.inv_ext,srcnames,label=label))
        inspectors.append(ns.inspector(label,'diff-ext') << \
            StdTrees.define_inspector(ns.dext,srcnames,label=label))

    # make parmgroups and solvejobs
    global pg
    pg = ParmGroup.ParmGroup(label, [scale],
                             table_name="%s.fmep" % label,
                             bookmark=False)

    # make solvejobs
    ParmGroup.SolveJob("cal_" + label,
                       "Calibrate %s (differential refraction)" % label, pg)

    return Jones
Exemple #3
0
  def source_list (self,ns,max_sources=None,**kw):
    """Reads LSM and returns a list of Meow objects.
    ns is node scope in which they will be created.
    Keyword arguments may be used to indicate which of the source attributes are to be
    created as Parms, use e.g. I=Meow.Parm(tags="flux") for this.
    The use_parms option may override this.
    """;
    if self.filename is None:
      return [];
    if self.lsm is None:
      self.load(ns);
    # all=1 returns unsorted list, so use a large count instead, to get a sorted list
    plist = self.lsm.queryLSM(count=9999999);
    
    # parse the beam expression
    if self.beam_expr is not None:
      try:
        beam_func = eval("lambda r,fq:"+self.beam_expr);
      except:
        raise RuntimeError("invalid beam expression");
    else:
      beam_func = None;
    
    # make list of direction,punit,I,I_apparent tuples
    parm = Meow.Parm(tags="source solvable");
    srclist = [];
    for pu in plist:
      ra,dec,I,Q,U,V,spi,freq0,RM = pu.getEssentialParms(ns);
      if self.solve_pos:
        ra = parm.new(ra);
        dec = parm.new(dec);
      direction = Meow.Direction(ns,pu.name,ra,dec,static=not self.solve_pos);
      Iapp = I;
      if beam_func is not None:
      # if phase centre is already set (i.e. static), then lmn will be computed here, and we
      # can apply a beam expression
        lmn = direction.lmn_static();
        if lmn is not None:
          r = sqrt(lmn[0]**2+lmn[1]**2);
          Iapp = I*beam_func(r,freq0*1e-9 or 1.4);  # use 1.4 GHz if ref frequency not specified
      # append to list
      srclist.append((pu.name,direction,pu,I,Iapp));
    # sort list by decreasing apparent flux
    from past.builtins import cmp
    from functools import cmp_to_key
    srclist.sort(key=cmp_to_key(lambda a,b:cmp(b[4],a[4])));
    
    srclist_full = srclist;
    # extract active subset
    srclist = self._subset_parser.apply(self.lsm_subset,srclist_full,names=[src[0] for src in srclist_full]);
    # extract solvable subset
    solve_subset = self._subset_parser.apply(self.solve_subset,srclist_full,names=[src[0] for src in srclist_full]);
    solve_subset = set([src[0] for src in solve_subset]);

    # make copy of kw dict to be used for sources not in solvable set
    kw_nonsolve = dict(kw);
    # and update kw dict to be used for sources in solvable set
    if self.solvable_sources:
      if self.solve_I:
        kw.setdefault("I",parm);
      if self.solve_Q:
        kw.setdefault("Q",parm);
      if self.solve_U:
        kw.setdefault("U",parm);
      if self.solve_V:
        kw.setdefault("V",parm);
      if self.solve_spi:
        kw.setdefault("spi",parm);
      if self.solve_RM:
        kw.setdefault("RM",parm);
      if self.solve_pos:
        kw.setdefault("ra",parm);
        kw.setdefault("dec",parm);
      if self.solve_shape:
        kw.setdefault("sx",parm);
        kw.setdefault("sy",parm);
        kw.setdefault("phi",parm);

    # make Meow list
    source_model = []

  ## Note: conversion from AIPS++ componentlist Gaussians to Gaussian Nodes
  ### eX, eY : multiply by 2
  ### eP: change sign
    for name,direction,pu,I,Iapp in srclist:
#      print "%-20s %12f %12f"%(pu.name,I,Iapp);
      src = {};
      ( src['ra'],src['dec'],
        src['I'],src['Q'],src['U'],src['V'],
        src['spi'],src['freq0'],src['RM']    ) = pu.getEssentialParms(ns)
      (eX,eY,eP) = pu.getExtParms()
      # scale 2 difference
      src['sx'] = eX*2
      src['sy'] = eY*2
      src['phi'] = -eP
      # override zero values with None so that Meow can make smaller trees
      if not src['RM']:
        src['RM'] = None;
      if not src['spi']:
        src['spi'] = None;
        if src['RM'] is None:
          src['freq0'] = None;
      ## construct parms or constants for source attributes
      ## if source is in solvable set (solvable_source_set of None means all are solvable),
      ## use the kw dict, else use the nonsolve dict for source parameters
      if name in solve_subset:
        solvable = True;
        kwdict = kw;
      else:
        solvable = False;
        kwdict = kw_nonsolve;
      for key,value in src.items():
        meowparm = kwdict.get(key);
        if isinstance(meowparm,Meow.Parm):
          src[key] = meowparm.new(value);
        elif meowparm is not None:
          src[key] = value;

      if eX or eY or eP:
        # Gaussians
        if eY:
          size,phi = [src['sx'],src['sy']],src['phi'];
        else:
          size,phi = src['sx'],None;
        src = Meow.GaussianSource(ns,name=pu.name,
                I=src['I'],Q=src['Q'],U=src['U'],V=src['V'],
                direction=direction,
                spi=src['spi'],freq0=src['freq0'],RM=src['RM'],
                size=size,phi=phi);
      else:
        src = Meow.PointSource(ns,name=pu.name,
                I=src['I'],Q=src['Q'],U=src['U'],V=src['V'],
                direction=direction,
                spi=src['spi'],freq0=src['freq0'],RM=src['RM']);
                
      # check for beam LM
      if pu._lm is not None:
        src.set_attr('beam_lm',pu._lm);
              
      src.solvable = solvable;
      src.set_attr('Iapp',Iapp);
      source_model.append(src);
      
    return source_model;
Exemple #4
0
    def source_list(self, ns, max_sources=None, **kw):
        """Reads LSM and returns a list of Meow objects.
        ns is node scope in which they will be created.
        Keyword arguments may be used to indicate which of the source attributes are to be
        created as Parms, use e.g. I=Meow.Parm(tags="flux") for this.
        The use_parms option may override this.
        """
        if self.filename is None:
            return []
        # load the sky model
        if self.lsm is None:
            self.lsm = Tigger.load(self.filename)

        # sort by brightness
        import functools
        from past.builtins import cmp
        from functools import cmp_to_key
        sources = sorted(
            self.lsm.sources,
            key=cmp_to_key(lambda a, b: cmp(b.brightness(), a.brightness())))

        # extract subset, if specified
        sources = SourceSubsetSelector.filter_subset(self.lsm_subset, sources,
                                                     self._getTagValue)
        # get nulls subset
        if self.null_subset:
            nulls = set([
                src.name for src in SourceSubsetSelector.filter_subset(
                    self.null_subset, sources)
            ])
        else:
            nulls = set()
        parm = Meow.Parm(tags="source solvable")
        # make copy of kw dict to be used for sources not in solvable set
        kw_nonsolve = dict(kw)
        # and update kw dict to be used for sources in solvable set
        # this will be a dict of lists of solvable subgroups
        parms = []
        subgroups = {}
        if self.solvable_sources:
            subgroup_order = []
            for sgname in _SubgroupOrder:
                if getattr(self, 'solve_%s' % sgname):
                    sg = subgroups[sgname] = []
                    subgroup_order.append(sgname)

        # make Meow list
        source_model = []

        for src in sources:
            is_null = src.name in nulls
            # this will be True if this source has solvable parms
            solvable = self.solvable_sources and not is_null and (
                not self.lsm_solvable_tag
                or getattr(src, self.lsm_solvable_tag, False))
            if solvable:
                # independent groups?
                if self.lsm_solve_group_tag:
                    independent_sg = sgname = "%s:%s" % (
                        self.lsm_solve_group_tag,
                        getattr(src, self.lsm_solve_group_tag, "unknown"))
                else:
                    independent_sg = ""
                    sgname = 'source:%s' % src.name
                if sgname in subgroups:
                    sgsource = subgroups[sgname]
                else:
                    sgsource = subgroups[sgname] = []
                    subgroup_order.append(sgname)
            # make dict of source parametrs: for each parameter we have a value,subgroup pair
            if is_null:
                attrs = dict(ra=src.pos.ra,
                             dec=src.pos.dec,
                             I=0,
                             Q=None,
                             U=None,
                             V=None,
                             RM=None,
                             spi=None,
                             freq0=None)
            else:
                attrs = dict(
                    ra=src.pos.ra,
                    dec=src.pos.dec,
                    I=src.flux.I,
                    Q=getattr(src.flux, 'Q', None),
                    U=getattr(src.flux, 'U', None),
                    V=getattr(src.flux, 'V', None),
                    RM=getattr(src.flux, 'rm', None),
                    freq0=getattr(src.flux, 'freq0', None)
                    or (src.spectrum and getattr(src.spectrum, 'freq0', None)),
                    spi=src.spectrum and getattr(src.spectrum, 'spi', None))
            if not is_null and isinstance(src.shape, ModelClasses.Gaussian):
                attrs['lproj'] = src.shape.ex * math.sin(src.shape.pa)
                attrs['mproj'] = src.shape.ex * math.cos(src.shape.pa)
                attrs['ratio'] = src.shape.ey / src.shape.ex
            # construct parms or constants for source attributes, depending on whether the source is solvable or not
            # If source is solvable and this particular attribute is solvable, replace
            # value in attrs dict with a Meq.Parm.
            if solvable:
                for parmname, value in list(attrs.items()):
                    sgname = _Subgroups.get(parmname, None)
                    if sgname in subgroups:
                        solvable = True
                        parm = attrs[parmname] = ns[src.name](
                            parmname) << Meq.Parm(value or 0,
                                                  tags=["solvable", sgname],
                                                  solve_group=independent_sg)
                        subgroups[sgname].append(parm)
                        sgsource.append(parm)
                        parms.append(parm)

            # construct a direction
            direction = Meow.Direction(ns,
                                       src.name,
                                       attrs['ra'],
                                       attrs['dec'],
                                       static=not solvable
                                       or not self.solve_pos)

            # construct a point source or gaussian or FITS image, depending on source shape class
            if src.shape is None or is_null:
                msrc = Meow.PointSource(ns,
                                        name=src.name,
                                        I=attrs['I'],
                                        Q=attrs['Q'],
                                        U=attrs['U'],
                                        V=attrs['V'],
                                        direction=direction,
                                        spi=attrs['spi'],
                                        freq0=attrs['freq0'],
                                        RM=attrs['RM'])
            elif isinstance(src.shape, ModelClasses.Gaussian):
                msrc = Meow.GaussianSource(ns,
                                           name=src.name,
                                           I=attrs['I'],
                                           Q=attrs['Q'],
                                           U=attrs['U'],
                                           V=attrs['V'],
                                           direction=direction,
                                           spi=attrs['spi'],
                                           freq0=attrs['freq0'],
                                           lproj=attrs['lproj'],
                                           mproj=attrs['mproj'],
                                           ratio=attrs['ratio'])
                if solvable and 'shape' in subgroups:
                    subgroups['pos'] += direction.get_solvables()
            elif isinstance(src.shape, ModelClasses.FITSImage):
                msrc = Meow.FITSImageComponent(ns,
                                               name=src.name,
                                               filename=src.shape.filename,
                                               direction=direction)
                msrc.set_options(fft_pad_factor=(src.shape.pad or 2))

            msrc.solvable = solvable

            # copy standard attributes from sub-objects
            for subobj in src.flux, src.shape, src.spectrum:
                if subobj:
                    for attr, val in src.flux.getAttributes():
                        msrc.set_attr(attr, val)
            # copy all extra attrs from source object
            for attr, val in src.getExtraAttributes():
                msrc.set_attr(attr, val)

            # make sure Iapp exists (init with I if it doesn't)
            if msrc.get_attr('Iapp', None) is None:
                msrc.set_attr('Iapp', src.flux.I)

            source_model.append(msrc)

        # if any solvable parms were made, make a parmgroup and solve job for them
        if parms:
            if os.path.isdir(self.filename):
                table_name = os.path.join(self.filename, "sources.fmep")
            else:
                table_name = os.path.splitext(self.filename)[0] + ".fmep"
            # make list of Subgroup objects for every non-empty subgroup
            sgs = []
            for sgname in subgroup_order:
                sglist = subgroups.get(sgname, None)
                if sglist:
                    sgs.append(Meow.ParmGroup.Subgroup(sgname, sglist))
            # make main parm group
            pg_src = Meow.ParmGroup.ParmGroup("source parameters",
                                              parms,
                                              subgroups=sgs,
                                              table_name=table_name,
                                              table_in_ms=False,
                                              bookmark=True)
            # now make a solvejobs for the source
            Meow.ParmGroup.SolveJob("cal_source",
                                    "Solve for source parameters", pg_src)

        return source_model