def load_args(self, args):
        '''
        根据输入读取数据。
        get the input
        '''
        super(MRNaiveBayesTest, self).load_args(args)
        if self.options.continuous_features is not None:
            self.continuous = []
            temp = self.options.continuous_features.split(',')
            for num in temp:
                try:
                    num = int(num)
                except:
                    self.option_parser.error(
                        "The continuous features number you type in are not integer"
                    )
                self.continuous.append(num)

        # 读取model get the model
        if self.options.model is None:
            self.option_parser.error("please type the path to the model")
        else:
            self.model = {
            }  # 记录每个类别下所有特征取值的数量 count the number of features for each category
            self.total = {}  # 记录每个类别的总数 count the number of each distribution
            job = NaiveBayes.MRNaiveBayesTrain()
            with open(current + '/' + self.options.model,
                      encoding='utf-8') as src:
                for line in src:
                    try:
                        # 该行不是'all'行,读取该类别下该特征下该特征取值的数量,
                        # if the line is not all, take the number of the features for this category
                        (cat,
                         feature), (key,
                                    num) = job.parse_output_line(line.encode())
                    except:
                        # 该行是'all'行,读取该类别的总数量 if it is 'all', get the number of total features
                        (cat, _), num = job.parse_output_line(line.encode())
                        self.total[cat] = num
                        continue
                    if (cat not in self.model):
                        # 若该类别不在model中,建立该类别
                        #if this category not in the model, establish this category
                        self.model[cat] = {}
                    if (feature not in self.model[cat]):
                        # 若该特征不在model[cat]中,建立该特征
                        #if this feature not in model[cat], establish this feature
                        self.model[cat][feature] = {}
                    self.model[cat][feature][
                        key] = num  # 记录数量 count the number
    def load_args(self,args):
        '''
        根据输入读取数据。
        '''
        super(MRNaiveBayesTest,self).load_args(args)
        if self.options.continuous_features is not None:
            self.continuous=[]
            temp = self.options.continuous_features.split(',')
            for num in temp:
                try:
                    num = int(num)
                except:
                    self.option_parser.error("The continuous features number you type in are not integer")
                self.continuous.append(num)

        #读取model
        if self.options.model is None:
            self.option_parser.error("please type the path to the model")
        else:
            self.model = {} #记录每个类别下所有特征取值的数量
            self.total = {} #记录每个类别的总数
            job = NaiveBayes.MRNaiveBayesTrain()
            with open(current+'/'+self.options.model,encoding='utf-8') as src:
                for line in src:
                    try:
                        #该行不是'all'行,读取该类别下该特征下该特征取值的数量
                        (cat, feature), (key, num) = job.parse_output_line(line.encode())
                    except:
                        #该行是'all'行,读取该类别的总数量
                        (cat, _), num = job.parse_output_line(line.encode())
                        self.total[cat] = num
                        continue
                    if(cat not in self.model):
                        #若该类别不在model中,建立该类别
                        self.model[cat] = {}
                    if(feature not in self.model[cat]):
                        #若该特征不在model[cat]中,建立该特征
                        self.model[cat][feature] = {}
                    self.model[cat][feature][key] = num #记录数量