Exemple #1
0
def dynamic_function_from_file(obj, filename):
    """
    Load a dynamic function from a file and attach it to the obj. (A Network
    or Trajectory.)
    
    The filename must be <function_name>.py
    """
    f = file(filename, 'r')
    function_body = f.read()
    f.close()

    basename = os.path.basename(filename)
    func = os.path.splitext(basename)[0]
    file_type = os.path.splitext(basename)[1][1:]

    if isinstance(obj, Trajectory_mod.Trajectory):
        setattr(obj, '%s_functionBody' % func, function_body)
        # We try to get the attribute 'namespace' for the object.
        Network_mod._exec_dynamic_func(obj, func, getattr(obj, 'namespace', {}))
    elif isinstance(obj, Network_mod.Network):
        if file_type == 'py':
            obj._dynamic_funcs_python[func] = function_body
            obj.exec_dynamic_functions(disable_c = True)
        elif file_type == 'c':
            obj.exec_dynamic_functions(curr_c_code = function_body)
Exemple #2
0
def dynamic_function_from_file(obj, filename):
    """
    Load a dynamic function from a file and attach it to the obj. (A Network
    or Trajectory.)
    
    The filename must be <function_name>.py
    """
    f = file(filename, 'r')
    function_body = f.read()
    f.close()

    basename = os.path.basename(filename)
    func = os.path.splitext(basename)[0]
    file_type = os.path.splitext(basename)[1][1:]

    if isinstance(obj, Trajectory_mod.Trajectory):
        setattr(obj, '%s_functionBody' % func, function_body)
        # We try to get the attribute 'namespace' for the object.
        Network_mod._exec_dynamic_func(obj, func,
                                       getattr(obj, 'namespace', {}))
    elif isinstance(obj, Network_mod.Network):
        if file_type == 'py':
            obj._dynamic_funcs_python[func] = function_body
            obj.exec_dynamic_functions(disable_c=True)
        elif file_type == 'c':
            obj.exec_dynamic_functions(curr_c_code=function_body)
Exemple #3
0
    def appendSensFromODEINT(self, timepoints, odeint_array, holds_dt=False):
        if getattr(self, '_assignment', None) is None:
            Network_mod._exec_dynamic_func(self,
                                           '_assignment',
                                           self.namespace,
                                           bind=False)

        if getattr(self, '_sens_assignment', None) is None:
            Network_mod._exec_dynamic_func(self,
                                           '_sens_assignment',
                                           self.namespace,
                                           bind=False)

        numAdded = odeint_array.shape[0]
        addedValues = scipy.zeros((numAdded, len(self.key_column)),
                                  scipy.float_)

        self.values = scipy.concatenate((self.values, addedValues))
        self.timepoints = scipy.concatenate((self.timepoints, timepoints))

        nDv = len(self.dynamicVarKeys)
        nOv = len(self.optimizableVarKeys)

        # fill in trajectory
        for ii, dvId in enumerate(self.dynamicVarKeys):
            self.values[-numAdded:, self.key_column.get(dvId)] = \
                    odeint_array[:, ii]
        # ... and sensitivities
        for ii, dvId in enumerate(self.dynamicVarKeys):
            for jj, ovId in enumerate(self.optimizableVarKeys):
                self.values[-numAdded:,
                            self.key_column.get((dvId, ovId))]\
                        = odeint_array[:, ii + (jj+1)*nDv]

        self._assignment(self.values, self.timepoints, -numAdded, None)
        self._sens_assignment(self.values, self.timepoints, -numAdded, None)

        if holds_dt:
            # fill in the time derivative of the trajectory
            for ii, dvId in enumerate(self.dynamicVarKeys):
                self.values[-numAdded:, self.key_column.get((dvId,'time'))] = \
                    odeint_array[:, ii + nDv*(nOv+1)]
        # ... and of the sensitivities
            for ii, dvId in enumerate(self.dynamicVarKeys):
                for jj, ovId in enumerate(self.optimizableVarKeys):
                    self.values[-numAdded:,
                            self.key_column.get((dvId, ovId,'time'))]\
                        = odeint_array[:, ii + (jj+1)*nDv + nDv*(nOv+1)]
    def appendSensFromODEINT(self, timepoints, odeint_array, holds_dt = False):
        if getattr(self, '_assignment', None) is None:
            Network_mod._exec_dynamic_func(self, '_assignment',
                                           self.namespace, bind=False)

        if getattr(self, '_sens_assignment', None) is None:
            Network_mod._exec_dynamic_func(self, '_sens_assignment',
                                           self.namespace, bind=False)

        numAdded = odeint_array.shape[0]
        addedValues = scipy.zeros((numAdded, len(self.key_column)),
                                  scipy.float_)

        self.values = scipy.concatenate((self.values, addedValues))
        self.timepoints = scipy.concatenate((self.timepoints, timepoints))

        nDv = len(self.dynamicVarKeys)
        nOv = len(self.optimizableVarKeys)

        # fill in trajectory
        for ii, dvId in enumerate(self.dynamicVarKeys):
            self.values[-numAdded:, self.key_column.get(dvId)] = \
                    odeint_array[:, ii]
        # ... and sensitivities
        for ii, dvId in enumerate(self.dynamicVarKeys):
            for jj, ovId in enumerate(self.optimizableVarKeys):
                self.values[-numAdded:,
                            self.key_column.get((dvId, ovId))]\
                        = odeint_array[:, ii + (jj+1)*nDv]

        self._assignment(self.values, self.timepoints, -numAdded, None)
        self._sens_assignment(self.values, self.timepoints, -numAdded, None)

        if holds_dt :
        # fill in the time derivative of the trajectory
            for ii, dvId in enumerate(self.dynamicVarKeys):
                self.values[-numAdded:, self.key_column.get((dvId,'time'))] = \
                    odeint_array[:, ii + nDv*(nOv+1)]
        # ... and of the sensitivities
            for ii, dvId in enumerate(self.dynamicVarKeys):
                for jj, ovId in enumerate(self.optimizableVarKeys):
                    self.values[-numAdded:,
                            self.key_column.get((dvId, ovId,'time'))]\
                        = odeint_array[:, ii + (jj+1)*nDv + nDv*(nOv+1)]
Exemple #5
0
    def appendFromODEINT(self, timepoints, odeint_array, holds_dt = False):
        if getattr(self, '_assignment', None) is None:
            Network_mod._exec_dynamic_func(self, '_assignment',
                                           self.namespace, bind=False)

        numAdded = odeint_array.shape[0]
        addedValues = scipy.zeros((numAdded, len(self.key_column)),
                                  scipy.float_)

        self.values = scipy.concatenate((self.values, addedValues))
        self.timepoints = scipy.concatenate((self.timepoints, timepoints))

        for ii, id in enumerate(self.dynamicVarKeys):
            self.values[-numAdded:, self.key_column.get(id)] =\
                    odeint_array[:, ii]

        self._assignment(self.values, self.timepoints, -numAdded, None)
        if holds_dt :
            for ii, id in enumerate(self.dynamicVarKeys) :
                self.values[-numAdded:, self.key_column.get((id,'time'))] = \
                    odeint_array[:,ii+len(self.dynamicVarKeys)]
Exemple #6
0
def createNetworkParameter(p):
    id, name = p.getId(), p.getName()
    v = p.getValue()
    isConstant = p.getConstant()

    parameter = Network_mod.Parameter(id=id,
                                      value=v,
                                      is_constant=isConstant,
                                      name=name,
                                      typical_value=None,
                                      is_optimizable=True)
    # optimizable by default

    return parameter
Exemple #7
0
def fromSBMLString(sbmlStr, id=None, duplicate_rxn_params=False):
    r = libsbml.SBMLReader()
    d = r.readSBMLFromString(sbmlStr)
    if d.getNumErrors():
        message = 'libSBML reported errors in SBML file. Try running file '\
                'through the online validator: '\
                'http://www.sbml.org/Facilities/Validator . Specific errors '\
                'noted are: '
        errors = []
        for ii in range(d.getNumErrors()):
            pm = d.getError(ii)
            errors.append(pm.getMessage())
        print(message + '; '.join(errors))

    m = d.getModel()

    modelId = m.getId()
    if (id is None) and (modelId == ''):
        raise ValueError('Network id not specified in SBML or passed in.')
    elif id is not None:
        modelId = id

    rn = Network_mod.Network(id=modelId, name=m.getName())

    for f in m.getListOfFunctionDefinitions():
        id, name = f.getId(), f.getName()
        math = f.getMath()
        variables = []
        for ii in range(math.getNumChildren() - 1):
            variables.append(formula_to_py(math.getChild(ii)))

        math = formula_to_py(math.getRightChild())

        rn.addFunctionDefinition(id, variables, math)

    for c in m.getListOfCompartments():
        id, name = c.getId(), c.getName()
        size = c.getSize()
        isConstant = c.getConstant()

        rn.addCompartment(id=id, size=size, isConstant=isConstant, name=name)

    for s in m.getListOfSpecies():
        id, name = s.getId(), s.getName()
        compartment = s.getCompartment()
        if s.isSetInitialConcentration():
            iC = s.getInitialConcentration()
        elif s.isSetInitialAmount():
            iC = s.getInitialAmount()
        else:
            iC = 1
        isBC, isConstant = s.getBoundaryCondition(), s.getConstant()

        xml_text = s.toSBML()
        uniprot_ids = set([
            entry[1:].split('"')[0] for entry in xml_text.split('uniprot')[1:]
        ])

        rn.addSpecies(id=id,
                      compartment=compartment,
                      initialConcentration=iC,
                      isConstant=isConstant,
                      is_boundary_condition=isBC,
                      name=name,
                      uniprot_ids=uniprot_ids)

    for p in m.getListOfParameters():
        parameter = createNetworkParameter(p)
        rn.addVariable(parameter)

    for rxn in m.getListOfReactions():
        id, name = rxn.getId(), rxn.getName()
        kL = rxn.getKineticLaw()
        kLFormula = kL.getFormula()

        substitution_dict = {}
        # Deal with parameters defined within reactions
        for p in kL.getListOfParameters():
            parameter = createNetworkParameter(p)
            # If a parameter with this name already exists, **and it has a
            # different value than this parameter** we rename this parameter
            # instance by prefixing it with the rxn name so there isn't a
            # clash.
            if parameter.id in rn.variables.keys():
                logger.warn('Parameter %s appears in two different reactions '
                            'in SBML file.' % parameter.id)
                if parameter.value != rn.variables.get(parameter.id).value or\
                   duplicate_rxn_params:
                    oldId = parameter.id
                    parameter.id = id + '_' + parameter.id
                    substitution_dict[oldId] = parameter.id
                    logger.warn('It has different values in the two positions '
                                'so we are creating a new parameter %s.' %
                                (parameter.id))
                else:
                    logger.warn('It has the same value in the two positions '
                                'so we are only defining one parameter %s. '
                                'This behavior can be changed with the option '
                                'duplicate_rxn_params = True' % (parameter.id))

            if parameter.id not in rn.variables.keys():
                rn.addVariable(parameter)
        kLFormula = ExprManip.sub_for_vars(kLFormula, substitution_dict)

        # Assemble the stoichiometry. SBML has the annoying trait that
        #  species can appear as both products and reactants and 'cancel out'
        # For each species appearing in the reaction, we build up a string
        # representing the stoichiometry. Then we'll simplify that string and
        # see whether we ended up with a float value in the end.
        stoichiometry = {}
        reactant_stoichiometry = {}
        product_stoichiometry = {}
        for reactant in rxn.getListOfReactants():
            species = reactant.getSpecies()
            stoichiometry.setdefault(species, '0')
            stoich = reactant.getStoichiometryMath()
            stoich = stoichToString(reactant, stoich)
            stoichiometry[species] += '-(%s)' % stoich
            if species in reactant_stoichiometry:
                reactant_stoichiometry[species].append(stoich)
            else:
                reactant_stoichiometry[species] = [stoich]

        for product in rxn.getListOfProducts():
            species = product.getSpecies()
            stoichiometry.setdefault(species, '0')
            stoich = product.getStoichiometryMath()
            stoich = stoichToString(product, stoich)
            stoichiometry[species] += '+(%s)' % stoich
            if species in product_stoichiometry:
                product_stoichiometry[species].append(stoich)
            else:
                product_stoichiometry[species] = [stoich]

        for species, stoich in stoichiometry.items():
            stoich = ExprManip.simplify_expr(stoich)
            try:
                # Try converting the string to a float.
                stoich = float(stoich)
            except ValueError:
                pass
            stoichiometry[species] = stoich

        for modifier in rxn.getListOfModifiers():
            stoichiometry.setdefault(modifier.getSpecies(), 0)

        rn.addReaction(id=id,
                       stoichiometry=stoichiometry,
                       kineticLaw=kLFormula,
                       reactant_stoichiometry=reactant_stoichiometry,
                       product_stoichiometry=product_stoichiometry)

    for ii, r in enumerate(m.getListOfRules()):
        if r.getTypeCode() == libsbml.SBML_ALGEBRAIC_RULE:
            math = formula_to_py(r.getMath())
            rn.add_algebraic_rule(math)
        else:
            variable = r.getVariable()
            math = formula_to_py(r.getMath())
            if r.getTypeCode() == libsbml.SBML_ASSIGNMENT_RULE:
                rn.addAssignmentRule(variable, math)
            elif r.getTypeCode() == libsbml.SBML_RATE_RULE:
                rn.addRateRule(variable, math)

    for ii, e in enumerate(m.getListOfEvents()):
        id, name = e.getId(), e.getName()

        if id == '':
            id = 'event%i' % ii

        try:
            # For libSBML 3.0
            trigger_math = e.getTrigger().getMath()
        except AttributeError:
            # For older versions
            trigger_math = e.getTrigger()
        trigger = formula_to_py(trigger_math)

        if e.getDelay() is not None:
            try:
                # For libSBML 3.0
                delay_math = e.getDelay().getMath()
            except AttributeError:
                # For older versions
                delay_math = e.getDelay()
            delay = formula_to_py(delay_math)
        else:
            delay = 0

        timeUnits = e.getTimeUnits()
        eaDict = KeyedList()
        for ea in e.getListOfEventAssignments():
            ea_formula = formula_to_py(ea.getMath())
            ea_formula = ea_formula.replace('or(', 'or_func(')
            ea_formula = ea_formula.replace('and(', 'and_func(')
            eaDict.set(ea.getVariable(), ea_formula)

        rn.addEvent(id=id,
                    trigger=trigger,
                    eventAssignments=eaDict,
                    delay=delay,
                    name=name)

    for ii, con in enumerate(m.getListOfConstraints()):
        id, name = con.getId(), con.getName()
        if id == '':
            id = 'constraint%i' % ii

        trigger_math = con.getMath()

        trigger = formula_to_py(trigger_math)

        if con.isSetMessage():
            message = con.getMessage()
        else:
            message = None

        rn.addConstraint(id=id, trigger=trigger, message=message, name=name)

    return rn