def unit(u_, Data0, cc, blockID): # number of time bins to include in the LFP array nlfpsamp = 0 for tt, trial in enumerate(Data0['trial'][0][0][0]): thislfpsamp = trial['LFP'].shape[1] if thislfpsamp>nlfpsamp: nlfpsamp = thislfpsamp ntrials = Data0['trial'][0][0][0].size # find number of trials nstimID = Data0['trial'][0][0][0][0]['Epoch_Value'][0].size # initialze LFP, spike times, spike trials, spike waveform lfp = np.ndarray((0, nlfpsamp), dtype = 'float32') spktimes = np.ndarray(0) spktrials = np.ndarray(0) spkwaveform = np.ndarray((0, 22)) # initialize frequency and attenuation IDs stimID = np.ndarray((0, nstimID), dtype = 'float32') ttt = 0 # valid trial counter for tt in range(ntrials): trial = Data0['trial'][0][0][0][tt] thisstimID = np.float32(trial['Epoch_Value'][0]) # if not ((blockID.startswith('b')) and (thisstimID[0] < 2)): # get the LFP for this trial and pad it with nans so it can fit in a matrix (since # some of the trials have +/-1 data point for LFP) lfpchannel = trial['LFP'][cc] lfpchannel = np.concatenate((lfpchannel, np.zeros(nlfpsamp - len(lfpchannel)) * np.nan)) lfp = np.vstack((lfp, lfpchannel)) spktime = trial['CH'][0][cc]['latency'] if np.prod(spktime.shape) > 0: spktimes = np.append(spktimes, spktime) spktrials = np.append(spktrials, np.ones(spktime.size) * ttt) spkwaveform = np.concatenate((spkwaveform, trial['CH'][0][cc]['spkwaveform'].T), 0) # add to Epoch_Value stimID = np.vstack((stimID, thisstimID)) ttt += 1 # increment valid trial counter # end if valid ID # end trial loop if spktimes.size == 0: # if no spikes print 'No spikes detected for this unit.' spktimes = np.array([np.nan]) spktrials = np.array([np.nan]) spkwaveform = np.array([np.nan]) rast = np.array([np.nan]) else: # filter out unwanted trials remID = np.array([np.nan, np.nan]) if blockID.startswith('b'): remID = np.array([1., 70.]) elif blockID.startswith('r'): remID = np.array([0., 0.]) spktimes, spktrials, spkwaveform, lfp, stimID = \ remove_trials(spktimes, spktrials, spkwaveform, lfp, stimID, remID) # create raster ntrials = stimID.shape[0] nbins = np.ceil(1000 * spktimes.max())+1 rast = Spikes.calc_rast(spktimes, spktrials, ntrials, nbins) # save out to file u_.create_dataset('chan', data = cc) u_.create_dataset('blockID', data = blockID) # add stimulus ID datasets to this stimset on this unit u_.create_dataset('stimID', data = stimID) u_.create_dataset('lfp', data = lfp, compression = 'gzip') u_.create_dataset('spktimes', data = spktimes, compression = 'gzip') u_.create_dataset('spktrials', data = spktrials, compression = 'gzip') u_.create_dataset('spkwaveform', data = spkwaveform, compression = 'gzip') u_.create_dataset('rast', data = rast, compression = 'gzip') if blockID.startswith('b'): rf = RF.calc_rf(rast, stimID) u_.create_dataset('rf', data = rf, compression = 'gzip')
def rr_make_contactsheets(): ''' loop through all the sessions and plot the rrtfs ''' fig = plt.figure(figsize = (30, 18)); txt_suptitle = fig.suptitle('') ax_cfrrtf = fig.add_axes((0.76, 0.76, 0.24, 0.23)); ax_cfvs = ax_cfrrtf.twinx(); ax_cfcircpsthall = fig.add_axes((0.62, (11/14.)-0.02, 0.1, (1/7.)+0.04), polar = True) ax_cfcircpsthall.set_xticklabels(''); ax_cfcircpsthall.set_yticklabels(''); ax_rf = fig.add_axes((0.67, 0.51, 0.33, 0.23)); ax_rfrast = fig.add_axes((0.67, 0.25, 0.33, 0.24)); ax_rfrast.set_xticklabels(''); ax_rfpsth = fig.add_axes((0.67, 0.01, 0.33, 0.24)); ax_cfrr = [fig.add_axes((0.03, 1-((i+1)/7.), 0.35, 1/7.)) for i in np.arange(nrrs)] ax_cfalignedpsth = [fig.add_axes((0.38, 1-((i+1)/7.), 0.17, 1/7.)) for i in np.arange(nrrs)] ax_cfcircpsth = [fig.add_axes((0.53, 1-((i+1)/7.), 0.1, 1/7.), polar = True) for i in np.arange(nrrs)] # ax_noiserr = [fig.add_subplot(nrrs, 3, i) for i in np.arange(1, 3*nrrs, 3)] for sessionpath in sessionpaths: session = os.path.split(sessionpath)[1] unitinfos = fileconversion.get_session_unitinfo(sessionpath, onlycomplete = ('RF', 'RR', 'VOC')) for unitkey in unitinfos.keys(): txt_suptitle.set_text('%s %s' % (session, unitkey)) unitinfo = unitinfos[unitkey] rf_ix = unitinfo['stimtype'].index('RF') f_rf = h5py.File(unitinfo['fpath'][rf_ix], 'r') rf_rast = f_rf['rast'].value rf_stimparams = f_rf['stimID'].value cf_ix = f_rf['cf'].value f_rf.close() cf = ix2freq[20:][int(cf_ix)] ''' calculate and plot RF, psth, and sorted raster''' rf = RF.calc_rf(rf_rast, rf_stimparams) rf_psth = Spikes.calc_psth(rf_rast) RF.plot_rf(rf, cf = cf_ix, axes_on = False, ax = ax_rf) # plot RF ax_rf.axvline(cf_ix, color = 'r', lw = 1.5) Spikes.plot_sorted_raster(rf_rast, rf_stimparams, ax = ax_rfrast) # plot raster ax_rfpsth.plot(t_rf, Spikes.exp_smoo(rf_psth, tau = 0.005)) # plot PSTH ''' calcualte and plot RRTFs for CF and noise stimuli ''' rr_ix = unitinfo['stimtype'].index('RR') f_rr = h5py.File(unitinfo['fpath'][rr_ix], 'r') rr_rast = f_rr['rast'].value rr_stimparams = f_rr['stimID'].value f_rr.close() # find the played CF rr_ufreqs = np.unique(rr_stimparams[:, 0]) urrs = np.unique(rr_stimparams[:, 1]) npips = (urrs*4).astype(int) rr_freq, rr_ufreq_ix, _ = misc.closest(rr_ufreqs, cf, log = True) ax_rf.axvline(RF.calc_freq2ix(rr_freq), color = 'g', lw = 1.5) # calculate the PSTHs for each repetition rate tmp = Spikes.calc_psth_by_stim(rr_rast, rr_stimparams) rr_cfpth = tmp[0][rr_ufreq_ix, :, :] # rrtf_noisepsth = tmp[0][0, :, :] # plot the aligned psths RR.aligned_psth_separate_all(rr_rast, rr_stimparams, rr_freq, npips, axs = ax_cfalignedpsth) [a.set_yticklabels('') for a in ax_cfalignedpsth] [a.set_xticklabels('') for a in ax_cfalignedpsth[:-1]] # plot circular psths r, V, theta = RR.circ_psth_all(rr_rast, rr_stimparams, rr_freq, npips, axs = ax_cfcircpsth) [a.set_yticklabels('') for a in ax_cfcircpsth] [a.set_xticklabels('') for a in ax_cfcircpsth] # plot all circular summed vector strengths ax_cfcircpsthall.plot(theta, V, '.-') [ax_cfcircpsthall.plot([0, th], [0, v], color = 'b', alpha = 1-(i/10.)) for i, (th, v) in enumerate(zip(theta, V))] # plot RRTF rrtf = RR.calc_rrtf_all(rr_rast, rr_stimparams, rr_freq, urrs, npips) ax_cfrrtf.plot(rrtf, '.-', ms = 10) ax_cfvs.plot(V*np.cos(theta), 'g.-', ms = 10) for tick in ax_cfvs.yaxis.get_major_ticks(): tick.set_pad(-5) tick.label2.set_horizontalalignment('right') # plot repetition rate PSTHs for i in xrange(nrrs): # RR.plot_rrtf(t_rrtf, rrtf_noisepsth[i, :], urrs[i], int(4*urrs[i]), onset = 0.05, duration = 0.025, ax = ax_noiserr[i]) RR.plot_rrtf(t_rrtf, rr_cfpth[i, :], urrs[i], int(4*urrs[i]), onset = 0.05, duration = 0.025, ax = ax_cfrr[i]) # ax_noiserr[0].set_title('Noise RRTFs') ax_cfrr[0].set_title('CF RRTFs (%.0f kHz)' % (cf/1000)) # [a.set_xlim(0, 4.5) for a in ax_noiserr] [a.set_xlim(0, 4.5) for a in ax_cfrr] misc.sameyaxis(ax_cfrr+ax_cfalignedpsth) figsavepath = os.path.join(studydir, 'Sheets', 'RRTFs', '%s_%s_RRTF.png' % (session, unitkey)) print figsavepath fig.savefig(figsavepath) [a.cla() for a in fig.get_axes()] # clear all axes
def characterize(sesss = sesss, experiment = 'Fmr1_RR', pplot = True, verbose = False): if type(sesss) == str: sesss = [sesss] # set up figure figsize = (12, 12) fig = plt.figure(figsize = figsize) # loop through sesss for sess in sesss: DB = np.empty(0, dtype = dtype) print '%s\n%s\n\n' % (sess, '-'*50) # build the output directory path savedir = os.path.join(basedir, experiment, 'Sessions', sess, 'analysis') if not os.path.exists(savedir): os.mkdir(savedir) # WT or KO / CTL or EXP gen, exp, date = sess.split('_') # find the RF blocks pens = glob.glob(os.path.join(basedir, experiment, 'Sessions', sess, 'fileconversion', 'RF*.h5')) # load the cfs for this sess cfs = np.loadtxt(os.path.join(basedir, experiment, 'Sessions', sess, 'cfs.txt'), ndmin = 1) # loop through blocks in this sess for pen in pens: absol, relat = os.path.split(pen) blockname = os.path.splitext(relat)[0] # get unit number from filename unitnum = np.int32(p.findall(relat))[0] # unit number ix = cfs[:, 0] == unitnum if ix.sum() > 0: cf_man = cfs[ix, 1][0] if verbose: print pen # load the RF block f = h5py.File(pen, 'r') spktimes = f['spktimes'].value # if not np.isnan(spktimes[0]): '''--------RF--------''' # load the RF block to get the RF rf = f['rf'].value; rast = f['rast'].value; spktimes = f['spktimes'].value; stimparams = f['stimID'].value; spktrials = f['spktrials'].value; coord = f['coord'].value; ntrials = f['rast'].shape[0]; f.close() # calculate the psth (spk/s*trial, normalized by number of trials psth = Spikes.calc_psth(rast, normed = True) # spk/s # baseline firing rate base_mean = psth[:stim_on].mean() # spk/s # response onset/offset psth_smoo = Spikes.exp_smoo(psth, tau = 0.003) resp_on, resp_off = Spikes.calc_on_off(psth_smoo, stim_on = stim_on) # rewindowed RF rf_rewin = RF.calc_rf(rast, stimparams, resp_on = resp_on + stim_on - 3, resp_off = resp_off + stim_on + 3, normed = True) # thresholded RF rf_thresh = rf_rewin.copy() rf_threshold = np.percentile(rf_thresh, 66)# upper quartile rf_peak = rf_rewin.max() rf_thresh[rf_thresh < rf_threshold] = 0 # find maximum RF cluster (rf_clust, clust_sizes) = RF.findmaxcluster(rf_thresh, cf = cf_man, include_diagonal = False) # if clust_sizes.max() < 10: # if it's a tiny RF, set it to nans # rf_clust = np.empty(rf_clust.shape) * np.nan rf_mask = rf_clust > 0 # find evoked psth ev_psth = RF.calc_evoked_psth(rast, stimparams, rf_mask) ev_psth_smoo = Spikes.exp_smoo(ev_psth, tau = 0.003) ev_resp_on, ev_resp_off = Spikes.calc_on_off(ev_psth_smoo, stim_on = stim_on) ev_mean = ev_psth[ev_resp_on : ev_resp_off].mean() # bandwidth and threshold bw, bw_lr, _, thresh = RF.calc_bw_cf_thresh(rf_mask) # center of mass com = RF.calc_rf_com(rf_clust) tip_top = np.max([thresh-2, 0]) tip_bottom = thresh com_tip = RF.calc_rf_com(rf_clust[tip_top:tip_bottom, :]) '''PLOT''' if pplot: rf1_ax = fig.add_subplot(221) rf2_ax = fig.add_subplot(222) psth1_ax = fig.add_subplot(223) psth2_ax = fig.add_subplot(224) RF.plot_RF(rf, bw_lr = bw_lr, thresh = thresh, cf = cf_man, ax = rf1_ax) RF.plot_RF(rf_clust, bw_lr = bw_lr, thresh = thresh, cf = cf_man, ax = rf2_ax) rf2_ax.axvline(com, color = 'g', ls = '--') rf2_ax.axvline(com_tip, color = 'b', ls = '--') psth1_ax.plot(psth_smoo) psth2_ax.plot(ev_psth_smoo) psth1_ax.axvline(resp_on+stim_on, color = 'r', ls = '--') psth1_ax.axvline(resp_off+stim_on, color = 'r', ls = '--') figpath = os.path.join(savedir, blockname + '.png') fig.savefig(figpath); fig.clf() '''PLOT''' DB.resize(DB.size + 1) DB[-1] = np.array((gen, exp, sess, unitnum, \ psth[:333], ev_psth[:333], \ rf, rf_clust, \ cf_man, com, com_tip, \ bw, bw_lr, thresh, coord, \ resp_on, resp_off, ev_resp_on, ev_resp_off, \ base_mean, ev_mean), dtype = dtype) # end unit loop np.savez(os.path.join(basedir, experiment, 'Sessions', sess, sess + '_RF.npz'), DB = DB) if verbose: print '\n'*4