def main(): model = VelocityModel( regressionModel=joblib.load('models/gradient-m.model'), frequency=10.0) agent = RLAgent('agent', decisionFrequency=20.0, defaultSpeed=4, defaultAltitude=6, yawRate=60, alternativeModel=model, maxDepth=math.inf, initialState=None) agent.setRl(verifyModel) agent.start() agent.join()
def main(): agent = RLAgent('agent', decisionFrequency=10.0, defaultSpeed=4, defaultAltitude=6, yawRate=60) agent.defineState(orientation=getOrientation, position=getPosition, angularVelocity=getAngularVelocity, linearVelocity=getVelocity, linearAcceleration=getLinearAcceleration, angularAcceleration=getAngularAcceleration) agent.setRl(partial(flightLogger, dataset='datasets/' + 'replay.csv')) agent.start() agent.join()
def main(): agent = RLAgent('agent', decisionFrequency=10.0, defaultSpeed=4, defaultAltitude=20, yawRate=70) # callbacks will be called in the order they were specified, beware of order of execution (if any state parameter is # dependant on another) # state is lazily updated by the environment as the agent needs it , agent always get the freshest estimate of the # state, state updates are done by the environment in a rate that corresponds to agent decision making freq. agent.defineState(orientation=getOrientation, angularVelocity=getAngularVelocity, linearVelocity=getVelocity, position=getPosition) agent.setRl(monteCarlo) agent.setReward(reward) agent.setGoal(position=np.array([-40, -50, 0])) agent.setGoalMargins(position=np.array([0.5, 0.5, math.inf])) agent.start() agent.join()