def do_gradient_boost(): x_train, _, y_train, _, x_test, y_test = Rf.read_data() ada_boost = GradientBoostingClassifier() ada_boost.fit(x_train, y_train) score = ada_boost.score(x_test, y_test) print(score) Rf.save_model("Gradient2", ada_boost)
def do_Knn(): x_train, _, y_train, _, x_test, y_test = Rf.read_data() knn = KNeighborsClassifier(n_neighbors=5) knn.fit(x_train, y_train) score = knn.score(x_test, y_test) print(score) Rf.save_model("Knn2", knn)
def do_random_forest(): x_train, _, y_train, _, x_test, y_test = Rf.read_data() random_forest = RandomForestClassifier() random_forest.fit(x_train, y_train) score = random_forest.score(x_test, y_test) print(score) Rf.save_model("Random_Forest2", random_forest)
def do_Bagging(): x_train, _, y_train, _, x_test, y_test = Rf.read_data() bagging = BaggingClassifier() bagging.fit(x_train, y_train) score = bagging.score(x_test, y_test) print(score) Rf.save_model("Bagging2", bagging)
def do_ada_boost(): x_train, _, y_train, _, x_test, y_test = Rf.read_data() ada_boost = AdaBoostClassifier() ada_boost.fit(x_train, y_train) score = ada_boost.score(x_test, y_test) print(score) Rf.save_model("Ada2", ada_boost)
def do_svm(): x_train, _, y_train, _, x_test, y_test = Rf.read_data() scaler = StandardScaler() x_train = scaler.fit(x_train).transform(x_train) svc = SVC(kernel='linear', max_iter=1000) svc.fit(x_train, y_train) score = svc.score(x_test, y_test) print(score) Rf.save_model("SVM2", svc)
def SendConfigToAPIC(select_method, apic, configport): for value in configport: list_epg = Readfile.ReadEPG() vlan_list = value["VLAN"].split(",") for i in vlan_list: for j in list_epg: if j["Vlan"] == i: tenant = j["Tenant"] appprofile = j["AppProfile"] epg = j["EPG Name"] vlan = "vlan-" + str(j["Vlan"]) tDn = CreatePathConfig(value["POD"], value["nodeID_A"], value["nodeID_B"], value["Interface_ETH"], value["Interface_VPC"]) commit_config = apic.mit.polUni().fvTenant(tenant).fvAp(appprofile).fvAEPg(epg).fvRsPathAtt(encap=vlan, instrImedcy="immediate", tDn=tDn, status=select_method) try: result = commit_config.POST(format='xml') print("Status Code: " + colored(str(result.status_code), "green") + "\tMethod: " + select_method.upper()) print("Detail: " + "(Tenant) ===> " + colored(tenant, "yellow") + "\t(EPG) ===> " + colored(epg,"blue") + "\t(Path) ===> " + tDn) print("---------------------------------") except pyaci.errors.RestError as e: parse = (ET.fromstring(str(e))).find('./error') status = parse.attrib['code'] error = ((parse.attrib['text']).split("; "))[1] print("Status code: " + colored(status,"red") + "\tMethod: " + select_method.upper() + "\nDetail: " + error) print("---------------------------------") continue
def do_Knn_with_k(): print("K=4") knn = KNeighborsClassifier(n_neighbors=4) Rf.k_validation(knn) print("K=5") knn = KNeighborsClassifier(n_neighbors=5) Rf.k_validation(knn) print("K=10") knn = KNeighborsClassifier(n_neighbors=10) Rf.k_validation(knn)
def do_svm_with_k(): print("linear SVC") svc = SVC(kernel='linear', max_iter=1000) Rf.k_validation(svc) print("polynomial SVC") svc = SVC(kernel='poly', max_iter=1000) Rf.k_validation(svc) print("rbf SVC") svc = SVC(kernel='rbf', max_iter=1000) Rf.k_validation(svc)
def do_Knn_with_f1(): print("K=4") knn = KNeighborsClassifier(n_neighbors=4) Rf.f1_validation(knn, 'micro') Rf.f1_validation(knn, 'macro') Rf.f1_validation(knn, 'weighted') print("K=5") knn = KNeighborsClassifier(n_neighbors=5) Rf.f1_validation(knn, 'micro') Rf.f1_validation(knn, 'macro') Rf.f1_validation(knn, 'weighted') print("K=10") knn = KNeighborsClassifier(n_neighbors=10) Rf.f1_validation(knn, 'micro') Rf.f1_validation(knn, 'macro') Rf.f1_validation(knn, 'weighted')
def do_bagging_with_f1(): bagging = BaggingClassifier() Rf.f1_validation(bagging, 'micro') Rf.f1_validation(bagging, 'macro') Rf.f1_validation(bagging, 'weighted') Rf.f1_validation(bagging, None)
def do_gradient_boost_with_k(): ada_boost = GradientBoostingClassifier() Rf.k_validation(ada_boost)
def do_final_bagging(): x_train, _, y_train, _, _ = Rf.read_data_final() bagging = BaggingClassifier() bagging.fit(x_train, y_train) Rf.save_model("Bagging", bagging)
def do_Bagging_with_k(): bagging = BaggingClassifier() Rf.k_validation(bagging)
def do_gradient_boost_with_f1(): ada_boost = GradientBoostingClassifier() Rf.f1_validation(ada_boost, 'micro') Rf.f1_validation(ada_boost, 'macro') Rf.f1_validation(ada_boost, 'weighted') Rf.f1_validation(ada_boost, None)
Visualization.AccuracyInEpochs(ys, 20) def question3(): rate = 0.00005 count = 0 con_ws = Perceptrons.Weights([-1, 0, 0.5, -0.5, 0.5], rate) cla_ws = Perceptrons.Weights([-1.101, -0.008, 0.652, -0.372, 0.412], rate) conf = [] classf = [] col = [] for sample in data: if con_ws.activation(sample) == sample[-1]: count += 1 col.append('g') else: col.append('r') conf.append(round(con_ws.result, 3)) cla_ws.activation(sample) classf.append(round(cla_ws.result, 3)) Visualization.confidence(conf, classf, col) print(count / len(data)) data = Readfile.readfile("iris.arff") #question1() question2() #question3() #question 4 #Visualization.scatterplot(data)
def do_svm_with_f1(): print("linear SVC") svc = SVC(kernel='linear', max_iter=1000) Rf.f1_validation(svc, 'micro') Rf.f1_validation(svc, 'macro') Rf.f1_validation(svc, 'weighted') Rf.f1_validation(svc, None) print("poly SVC") svc = SVC(kernel='poly', max_iter=1000) Rf.f1_validation(svc, 'micro') Rf.f1_validation(svc, 'macro') Rf.f1_validation(svc, 'weighted') Rf.f1_validation(svc, None) print("rbf SVC") svc = SVC(kernel='rbf', max_iter=1000) Rf.f1_validation(svc, 'micro') Rf.f1_validation(svc, 'macro') Rf.f1_validation(svc, 'weighted') Rf.f1_validation(svc, None)
def do_random_forest_with_k(): random_forest = RandomForestClassifier() Rf.k_validation(random_forest)
def do_random_forest_with_f1(): random_forest = RandomForestClassifier() Rf.f1_validation(random_forest, 'micro') Rf.f1_validation(random_forest, 'macro') Rf.f1_validation(random_forest, 'weighted') Rf.f1_validation(random_forest, None)
import Readfile import Models import numpy as np from sklearn.naive_bayes import MultinomialNB from sklearn.model_selection import cross_validate from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.linear_model import LogisticRegression path1 = "neg.tok" path2 = "pos.tok" r_unigram = Readfile.Readfile(path1, path2, index=1) r_bigram = Readfile.Readfile(path1, path2, index=2) data_unigram = r_unigram.data_set data_bigram = r_bigram.data_set model = Models.Models() def test_model(data, classifier, message='-'): print('-------------------%s below--------------------' % message) data_set = model.binary_feature(data) np.random.shuffle(data_set) row, col = data_set.shape X = data_set[:, :col - 1] y = data_set[:, col - 1] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1) cv_results = cross_validate(classifier, X_train, y_train.ravel(),
def do_ada_boost_with_f1(): ada_boost = AdaBoostClassifier() Rf.f1_validation(ada_boost, 'micro') Rf.f1_validation(ada_boost, 'macro') Rf.f1_validation(ada_boost, 'weighted') Rf.f1_validation(ada_boost, None)
def do_ada_boost_with_k(): ada_boost = AdaBoostClassifier() Rf.k_validation(ada_boost)
import Readfile import Dictionarysearch import Sentenceprocess path_train = 'brown.train.tagged.txt' path_test = 'brown.test.txt' path_test_result = 'brown.test.tagged.txt' ds = Dictionarysearch.Dictionarysearch() sp = Sentenceprocess.Sentenceprocess() r1 = Readfile.Readfile(path_train) r1.sentence_process(r1.tag_index) test_file = open(path_test) test_line = [] test_tagged_file = open(path_test_result) test_tagged_line = [] for line in test_file: test_line.append(line) for line in test_tagged_file: test_tagged_line.append(line) word_array = sp.sentence2word(test_line) word_tagged_array = sp.sentence2word(test_tagged_line) index = 0 success = 0 total_unknown = 0 for word in word_array: result = (ds.find_most_frequent_tag(word, r1.tag_dictionary))
def do_final_Knn(): x_train, _, y_train, _, _ = Rf.read_data_final() knn = KNeighborsClassifier() knn.fit(x_train, y_train) Rf.save_model("Knn", knn)
def do_final_rf(): x_train, _, y_train, _, _ = Rf.read_data_final() random_forest = RandomForestClassifier() random_forest.fit(x_train, y_train) Rf.save_model("Random_Forest", random_forest)
import Readfile import ProbCalculate path_en = 'EN.txt' lang_en = 'English' path_fr = 'FR.txt' lang_fr = 'French' path_gr = 'GR.txt' lang_gr = 'German' path_test = 'LangID.test.txt' lang_test = 'English' path_res = 'LangID.gold.txt' english_file = Readfile.Readfile(path_en, 'English') english_file.change_str2word() # print(english_file.word_file) english_file.build_word_dic() english_file.build_probability() english_file.test_word_dictionary() french_file = Readfile.Readfile(path_fr, 'French') french_file.change_str2word() # print(french_file.word_file) french_file.build_word_dic() french_file.build_probability() french_file.test_word_dictionary() german_file = Readfile.Readfile(path_gr, 'German') german_file.change_str2word() # print(german_file.word_file) german_file.build_word_dic()
import Camera import SingleObject import Readfile import Shading # Loading file Points1, Polygons1, numofPolygon1 = Readfile.readfile('D files/nteapot6.d.txt') # Camera configuration c_pos = [5, 5, 10] p_ref = [0, 0, 0] d = 20 h = 15 f = 80 c = Camera.Camera(c_pos, p_ref, d, h, f) # Object initialization object1 = SingleObject.SingleObject(Points1, Polygons1, [0, -1, 0], numofPolygon1) # default backfaceculling is on object1.backfaceculling(c) object1.WorldtoScreen(c) object1.ScreentoDevices() # Object's color(RGB) object1.color = [20, 200, 160] Shading.Rendering.color = object1.color # Light source configuration Shading.light = [30, 30, 30] Shading.i_light = [0.8, 0.8, 0.8] Shading.ka = 0.4 Shading.ks = 1 Shading.kd = 0.6 Shading.c_pos = c_pos # Texture image