Exemple #1
0
def handle_ocv(handle, string, value):
    handle.ocv()
    while RealTime.ocv_on():
        read = handle.parsedread()
        appender(read)
        if not RealTime.TickTock(False):
            return
        time.sleep(.01)
    if string == "galvo":
        print "equal"
        handle.galvanostat(value)
    elif string == "pot":
        potentiostat(handle, value)
Exemple #2
0
def runGalvo(curr1=0.002, curr2=-0.002, vmax=1.6, vmin=0.9, cycles=4):
    #connecto to ardustat and setup resistance table
    #for i in range (0,3):
    a = ard.ardustat()
    a.connect(7777)
    a.debug = False
    #a.calibrate(15000,16)
    a.load_resistance_table(16)
    read = a.parsedread()
    print "Resistance table loaded"
    time.sleep(1)
    #create arrays + a function for logging data
    """
        subplot(3,1,1)
        potLine, = plot(times,potential,'.')
        title("Potential vs. Time")
        ylabel("Potential (V)")

        subplot(3,1,2)
        curLine, = plot(times,current,'.')
        title("Current vs. Time")
        ylabel("Current (A)")
        subplot(3,1,3)
        resLine, = plot(times,numpy.array(potential)/numpy.array(current))
        title("Resistance vs. Time")
        ylabel("Resistance (Ohms)")
        xlabel("Time (s)")
        

        #ion()                           # interaction mode needs to be turned off
 
        x = arange(0,2*pi,0.01)         # we'll create an x-axis from 0 to 2 pi
        line, = plot(x,x)               # this is our initial plot, and does nothing
        line.axes.set_ylim(-3,3)        # set the range for our plot
         
        starttime = time.time()         # this is our start time
        t = 0                           # this is our relative start time

        """
    """
        #Step through values
        output = 0
        print a.ocv()
        print -1
        for i in range(0,10):
                time.sleep(.1)
                read = a.parsedread()
                appender(read)
                print i


        #output = 0
        #while output < 2:
        output = 1.24
                #output = output + .01
        print a.potentiostat(output)
        for i in range(0,300):
        #for i in range(0,100):
                time.sleep(.1)
                read = a.parsedread()
                appender(read)
                       
        if str(a.ocv()) == "None":
                print "None"
                #connecto to ardustat and setup resistance table
                a = ard.ardustat()
                a.connect(7777)
                a.debug = False
                #a.calibrate(15000,16)
                a.load_resistance_table(16)
                time.sleep(.1)
              
        print a.ocv()
        for i in range(0,10):
                time.sleep(.1)
                read = a.parsedread()
                print "Appending initial values!"
                appender(read)
                if not RealTime.TickTock(False):
                        return
        
          """

    #output = 0
    #while output < .001:
    #output = -curr # new line
    #print  curr
    #print  output
    numCycles = int(cycles)
    for i in range(0, numCycles):  # new line
        #output = output + .00001
        #output = -output # new line
        #print output
        if not RealTime.ocv_on():
            if (i % 2) == 0:
                a.galvanostat(curr1)
            else:
                a.galvanostat(curr2)
        #for i in range(0,3):
        if (i % 2) == 0:
            voltage = vmin
            while voltage < vmax:  #for i in range (0,100): # new line
                if RealTime.paused():
                    handle_paused()
                if RealTime.ocv_on():
                    handle_ocv(a, "galvo", curr1)
                time.sleep(.01)
                read = a.parsedread()
                appender(read)
                voltage = read['cell_ADC']
                if not RealTime.TickTock(False):
                    return

        else:
            voltage = vmax
            while voltage > vmin:
                if RealTime.paused():
                    handle_paused()
                if RealTime.ocv_on():
                    handle_ocv(a, "galvo", curr2)
                time.sleep(.01)
                read = a.parsedread()
                appender(read)
                voltage = read['cell_ADC']
                if not RealTime.TickTock(False):
                    return
    """
        print a.ocv()
        for i in range(0,10):
                time.sleep(.1)
                read = a.parsedread()
                appender(read)
        """

    while True:
        if RealTime.ocv_on():
            handle_ocv(a)
        elif not RealTime.TickTock(True):
            return
    """
Exemple #3
0
def handle_paused():
    while RealTime.paused():
        if not RealTime.TickTock(False):
            return
        time.sleep(.1)
Exemple #4
0
def runPot(vol=1.4, cur=.001, slope=.01):
    #connecto to ardustat and setup resistance table
    #for i in range (0,3):
    a = ard.ardustat()
    a.connect(7777)
    a.debug = False
    #a.calibrate(15000,16)
    a.load_resistance_table(16)
    time.sleep(1)

    #create arrays + a function for logging data
    """
        subplot(3,1,1)
        potLine, = plot(times,potential,'.')
        title("Potential vs. Time")
        ylabel("Potential (V)")

        subplot(3,1,2)
        curLine, = plot(times,current,'.')
        title("Current vs. Time")
        ylabel("Current (A)")
        subplot(3,1,3)
        resLine, = plot(times,numpy.array(potential)/numpy.array(current))
        title("Resistance vs. Time")
        ylabel("Resistance (Ohms)")
        xlabel("Time (s)")
        

        #ion()                           # interaction mode needs to be turned off
 
        x = arange(0,2*pi,0.01)         # we'll create an x-axis from 0 to 2 pi
        line, = plot(x,x)               # this is our initial plot, and does nothing
        line.axes.set_ylim(-3,3)        # set the range for our plot
         
        starttime = time.time()         # this is our start time
        t = 0                           # this is our relative start time

        """
    """
        #Step through values
        output = 0
        print a.ocv()
        print -1
        for i in range(0,10):
                time.sleep(.1)
                read = a.parsedread()
                appender(read)
                print i


        #output = 0
        #while output < 2:
        output = 1.24
                #output = output + .01
        print a.potentiostat(output)
        for i in range(0,300):
        #for i in range(0,100):
                time.sleep(.1)
                read = a.parsedread()
                appender(read)
                       
        if str(a.ocv()) == "None":
                #connecto to ardustat and setup resistance table
                a = ard.ardustat()
                a.connect(7777)
                a.debug = False
                #a.calibrate(15000,16)
                a.load_resistance_table(16)
                
        a.ocv()
        for i in range(0,10):
                time.sleep(.1)
                read = a.parsedread()
                appender(read)

        

        
        read = a.parsedread()
        appender(read)
        voltage = volmeasured = read['cell_ADC']
        while volmeasured < vol:
                voltage += slope
                a.potentiostat(voltage)
                read = a.parsedread()
                appender(read)
                volmeasured = read['cell_ADC']
                if not RealTime.TickTock(False):
                        return
                time.sleep(.01)
        """
    if not RealTime.ocv_on():
        potentiostat(a, vol)
    read = a.parsedread()
    appender(read)
    currmeasured = read['current']
    #volmeasured = read['cell_ADC']
    #vol = vol - volmeasured
    while True:  #while currmeasured > cur:
        if RealTime.paused():
            handle_paused()
        if RealTime.ocv_on():
            handle_ocv(a, "pot", vol)
        read = a.parsedread()
        appender(read)
        currmeasured = read['current']
        if not RealTime.TickTock(False):
            return
        time.sleep(.01)

    while True:
        if RealTime.ocv_on():
            handle_ocv(a)
        elif not RealTime.TickTock(True):
            return