def load_game(): import Utils import MemoryGame import GuessGame import Score print( "Please choose a game to play: \n 1. Memory Game - a sequence of numbers will appear for 1 second and you have to guess it back \n 2. Guess Game - guess a number and see if you chose like the computer" ) choosegame = input() print("Please choose game difficulty from 1 to 5 :") if (choosegame > "2") or (choosegame < "1"): print(Utils.ERROR_MESSAGE), load_game() choosegame = int(choosegame) difficulty = input() if (difficulty > "5") or (difficulty < "1"): print(Utils.ERROR_MESSAGE), load_game() difficulty = int(difficulty) if choosegame == 1: if MemoryGame.play(difficulty) == True: Score.add_score(difficulty) else: load_game() elif choosegame == 2: if GuessGame.play(difficulty) == True: Score.add_score(difficulty) else: load_game()
def load_game(): print(Utils.GAMES_AVAILABLE) # game and difficulty choosing process game_chosen = Utils.validate_user_input(1, 2, "game") difficulty = Utils.validate_user_input(1, 5, "difficulty") game_result = None # running games by user's choice if game_chosen == 1: game_result = MemoryGame.play(difficulty) elif game_chosen == 2: game_result = GuessGame.play(difficulty) # checking weather the user won or lost - Refer to the play method in either GuessGame or MemoryGame if game_result: print("Congratulation! YOU WON") Score.add_score(difficulty) else: print("Close but not quit right") Score.add_score(0) load_game()
def load_game(): game_num = 0 game_dif = 0 score = 0 while score == 0: while game_num < 1 or game_num > 2: try: game_num = int( input( "1. Memory Game - a sequence of numbers will appear for 1 second and you have to guess it back.\r\n" "2. Guess Game - guess a number and see if you chose like the computer\r\n" "0. To cancel")) except ValueError as ee: print("Incorrect input. Try again.") if game_num == 0: exit() while game_dif < 1 or game_dif > 5: try: game_dif = int( input("Please choose game difficulty from 1 to 5:")) except ValueError as ee: print("Incorrect input. Try again.") if game_num == 1: score = MemoryGame.play(game_dif) if game_num == 2: score = GuessGame.play(game_dif) if score > 0: score_file = "Scores.txt" Score.add_score(score_file, score) return
def __init__(self, master=None): """ Constructeur de l'application Initialise tous les éléments visuels, sonores et touches @param master: Fenetre mère tkinter """ self.canvas = None self.main_frame = None self.hp_canvas = None self.frameHeros = None self.rows = None self.ennemies = None self.vague = 1 super().__init__(master) self.master = master self.pack(fill="both") self.score = Score() self.create_HPBAR() self.create_MAIN() self.hero = Joueur(ask_name()) self.drawJoueur() self.init_game(fullreset=True) self.pause() self.init_sound() self.init_touch_binding()
class GameWorld(object): """ GameWorld The game world """ def __init__(self, sense): """ Initialize the game world :param sense The sense hat """ self.level = Level() self.score = Score() self.mappy = Map(0, 7) self.snake = Snake(3, self.mappy) self.candy = Candy(self.snake) self.sense = sense self.i = 0 print(self.snake) self.sense.clear() self.sense.show_message("Level: " + str(self.level.level), text_colour=[180, 180, 180]) def update(self, delta): """ Compute all the objects :param delta The loop delta :return The dead state of the snake :return The score """ deadStatus = False # UPS: 60 -> 2 * 60 = 120 if (self.i >= (1.0 / self.snake.speed) * 120): deadStatus = self.snake.update(delta) self.__isEating__() print(self.snake) self.i = 0 else: self.i += 1 return (not deadStatus, self.score.score) def __isEating__(self): """ Detect when the Snake eat a candy """ head = self.snake.positions[0] if (head.x == self.candy.x and head.y == self.candy.y): self.score.increaseScore(self.snake, self.level) speed = int(self.snake.speed * 10) if (speed % 10 == 0): self.level.level += 1 self.sense.clear() self.sense.show_message("Level: " + str(self.level.level), text_colour=[180, 180, 180]) self.sense.clear() self.sense.show_message("Score: " + str(self.score.score), text_colour=[180, 180, 180]) self.sense.clear() self.candy.randomize()
def play(difficulty): pc_number = generate_number(difficulty) result = compare_results(difficulty, pc_number) if result: print("You won the game! " + str(difficulty) + " added to your score.") Score.add_score(difficulty) else: print("You lose!")
def score_server(): html = None try: Score.connect_db() score = Score.read_score_from_db() html = f"<html><head><title>Scores Game</title></head><body><h1>The score is <div id=\"score\">{score}</div></h1></body></html>" except BaseException as e: html = f"<html><head><title>Scores Game</title></head><body><body><h1><div id=\"score\" style=\"color:red\">{e}</div></h1></body></html>" Score.disconnect_db() return html
def checkAnswer(qNum): answer = int(input("R: ")) if (answer == c.correctAnswer[qNum]): c.currentGamePoints += 5 return True else: ap.addPoints("Puntajes.txt", c.currentGamePoints) ap.graphScore("Puntajes.txt") bf.quitGame() return False
def score_server(): try: Score.connect_db() text = Score.read_score_from_db() color = "black" except BaseException as e: text = e color = "red" Score.disconnect_db() return render_template('score.html', color=color, text=text)
def play(difficulty): secret_number = get_guess_from_user(difficulty) if compare_results(difficulty, secret_number): print("You won!") Score.add_score(difficulty) return True else: print("You lost") Score.add_score(0) Live.load_game() return False
def play(length, width, choice, Player_Bet, list_score, list_bet_score): winsound.PlaySound("Music\\Racing.wav", winsound.SND_LOOP + winsound.SND_ASYNC) FinishLine = RaceTrack.Draw_RaceTrack(length, width) list_characters = Character_Implement.Settings_Characters(choice) list_shapes = Character_Implement.Setting_Shapes(choice, list_characters) list_names = [ list_characters[0].Name, list_characters[1].Name, list_characters[2].Name, list_characters[3].Name, list_characters[4].Name ] list_rank = [0, 1, 2, 3, 4] random.shuffle(list_rank) list_place = [0, 0, 0, 0, 0] for step in range(5): for step2 in range(5): if list_rank[step2] == step: list_place[step] = step2 RaceTrack.Arrange_Characters(list_characters, length, width, list_shapes, list_rank) RaceTrack.display_Name(list_names, list_place, Player_Bet) start_time = time.time() list_time = [0, 0, 0, 0, 0] while Settings.End_Match_Condition(list_characters, FinishLine) == 1: for ID in range(5): Character_Implement.Running(list_characters, list_shapes, ID, choice, FinishLine, list_time, start_time) for step in range(0, 5): if step != Settings.Check_Who_First(list_time)[0]: list_characters[step].Lose() Character_Implement.Losing(list_characters[step]) Character_Implement.Winner( list_characters[Settings.Check_Who_First(list_time)[0]]) list_ID_rank = Settings.Check_Who_First(list_time) Announcement.Annoucement( Settings.Win_Lose_Condition(Player_Bet, Settings.Check_Who_First(list_time)[0]), list_ID_rank, list_names, list_time) Score.Count_Score(list_ID_rank, list_score) Score.Count_Bet_Score(list_ID_rank, list_bet_score, Player_Bet) pass
def play(num): generate_sequence(num) get_list_from_user(num) result = is_list_equal() if result: Score.write_score(num) print( "You have guessed right and won the game. \n The computer have also chosen %s" % generated_list) else: print("Wrong guess , You have lost! \n The computer have chosen %s" % generated_list)
def draw_score(): score = Score.Get_Score() x_off = Globals.margin[ 0] * 2 + Globals.image_size * Gameboard.Gameboard_size y_off = Globals.margin[1] + Globals.image_size * 2 TextHandler.RenderScore(str(score), x_off, y_off) combo = Score.Get_Combo() x_off = Globals.margin[ 0] * 2 + Globals.image_size * Gameboard.Gameboard_size y_off = Globals.margin[1] + 64 TextHandler.RenderCombo(("x" + str(combo)), x_off, y_off) Globals.update_score = False
def cal_score(ref_lines, probs): line_count = 0 pred_lines = defaultdict(list) for ref_line in ref_lines: ref_line = ref_line.replace('\n', '') parts = ref_line.strip().split() qid, aid, lbl = int(parts[0]), int(parts[2]), int(parts[3]) pred_lines[qid].append((aid, lbl, probs[line_count])) line_count += 1 MAP=Score.calc_mean_avg_prec(pred_lines) MRR=Score.calc_mean_reciprocal_rank(pred_lines) return MAP, MRR
def play(difflevel): get_money_interval(difflevel) get_guess_from_user() if user_guess_entry > from_interval and user_guess_entry < upto_interval: print( "You have guessed it approximately right and won the game. \n The rate of USDILS is %f" % USDILS) Score.write_score(difflevel) return True else: print("Wrong guess , You have lost! \n The rate of USDILS is %f" % USDILS) return False
def load_game(): no_exception = False # Flag to keep info whether exception was thrown or not while no_exception == False: print( "Please choose a game to play: \n" "\t1. Memory Game - a sequence of numbers will appear for 1 second and you have to guess it back \n" "\t2. Guess Game - guess a number and see if you chose like the computer \n" "\t3. Currency Roulette - try and guess the value of a random amount of USD in ILS" ) try: user__game_choice = int(input(">>>")) if user__game_choice not in range(1, 4): raise ValueError else: no_exception = True # The exception was not thrown, so the loop will be finished. except ValueError as e: print( "\t\t!!!!!!!!!!!!!!! Numbers 1, 2, 3 are only allowed !!!!!!!!!!!!!!!!!\n" ) no_exception = False # Flag to keep info whether exception was thrown or not while no_exception == False: print("Please choose game difficulty from 1 to 5:") try: user__dificulty_choice = int(input(">>>")) if user__dificulty_choice not in range(1, 6): raise ValueError else: no_exception = True # The exception was not thrown, so the loop will be finished. except ValueError as e: print( "\t\t!!!!!!!!!!!!!!! Numbers from 1 to 5 are only allowed !!!!!!!!!!!!!!!!!\n" ) if user__game_choice == 2: GuessGame.set_difficulty(user__dificulty_choice) result = GuessGame.play() elif user__game_choice == 1: MemoryGame.set_difficulty(user__dificulty_choice) result = MemoryGame.play() elif user__game_choice == 3: CurrencyRouletteGame.set_difficulty(user__dificulty_choice) result = CurrencyRouletteGame.play() if result == True: print(" You won") Score.add_score(user__dificulty_choice) else: print(" You lost") Score.create_zero_score()
def getScore(steamId, games): data = games achievements = getPlayerAchievements(steamId, data) #for austin totalHoursPerGame = getHoursPerGame(data) totalPossibleAchievements = getTotalAchievements(achievements) earnedAchievement = achievementEarned(achievements) numberOfGames = data['game_count'] percenti = Score.percent(earnedAchievement, totalPossibleAchievements) aveHours = Score.getNumHours(totalHoursPerGame) / numberOfGames #def score(numGames, percent, avHours) score = Score.score(numberOfGames, percenti, aveHours) return score
def play(difficulty): list_a = generate_sequence(difficulty) print(list_a) Utils.screen_cleaner() list_b = get_list_from_user(difficulty) if is_list_equal(list_a, list_b): print("You won!") Score.add_score(difficulty) return True else: print("You lost") Score.add_score(0) Live.load_game() return False
def play(difflevel): generate_number(difflevel) if not get_guess_from_user(difflevel): print("You have chosen an incorrect Value! , please try again! ") exit(10) result = compare_results() if result == True: Score.write_score(difflevel) print( "You have guessed right and won the game. \n The computer have also chosen %d" % secret_number) else: print("Wrong guess , You have lost! \n The computer have chosen %d" % secret_number)
def quitGame(): global background, ball #restoration parametres terminal global old_settings os.system("clear") #couleur white sys.stdout.write("\033[37m") sys.stdout.write("\033[40m") Score.scores(ball) #pour jouer une seconde partie askContinueGame() termios.tcsetattr(sys.stdin, termios.TCSADRAIN, old_settings) sys.exit()
def addPlayer(player_name, tournament): """ Adds a player to the database and initializes the player's scoreboard Args: player_name = name of player to be added to the database tournament = id of tournament where the player will play """ name = player_name insertPlayer = "INSERT INTO players (name) VALUES (%s) RETURNING id" cursor.execute(insertPlayer, (name,)) player = cursor.fetchone()[0] conn.commit() Score.add_to_board(player, tournament)
def __init__(self, sense): """ Initialize the game world :param sense The sense hat """ self.level = Level() self.score = Score() self.mappy = Map(0, 7) self.snake = Snake(3, self.mappy) self.candy = Candy(self.snake) self.sense = sense self.i = 0 print(self.snake) self.sense.clear() self.sense.show_message("Level: " + str(self.level.level), text_colour=[180, 180, 180])
def main(): fileSeq = "../files/maguk-sequences.fasta" fileMatrice = "../files/blosum62.iij" parsedFiles = Parser(fileSeq, fileMatrice) #=============== Sequences ================ mySequences = parsedFiles.getSeq() # for elem in mySequences: # print(elem) #========================================== #================ Blosum ================== listAA = parsedFiles.getListAA() blosum = parsedFiles.getBlosum() blosumObj = Blosum(listAA, blosum) #print(blosumMatrice) # print(mySequences[0]) # print(mySequences[1]) x1 = ["T", "H", "I", "S", "L", "I", "N", "E", "D", "E", "D", "E", "D"] x2 = ["I", "S", "A", "L", "I", "G", "N", "E", "D", "A", "D", "I"] x1 = ["T", "H", "I", "S", "L", "I", "N", "E"] x2 = ["I", "S", "A", "L", "I", "G", "N", "E", "D"] x1 = mySequences[0].getSeq() x2 = mySequences[2].getSeq() x1 = ["M", "G", "G", "E", "T", "F", "A"] x2 = ["G", "G", "V", "T", "T", "F"] print(x1) print(x2) test = Score(x1, x2, blosumObj, -4)
def get_rmsle_list(self, dataset, num_folds, n_estimators_list): self.num_iterations += 1 print 'n_estimators_list: %s' % n_estimators_list rmsle_list = [] score = Score.Score() for fold_ind in range(num_folds): print ' fold_ind: %d' % fold_ind fold_train = dataset.getTrainFold(fold_ind) fold_test = dataset.getTestFold(fold_ind) self._train(fold_train, n_estimators_list) score.addFold(fold_test.getSales(), self.predict(fold_test)) for month_ind in range(12): cur_rmsle = score.getRMSLE(month_ind) rmsle_list.append(cur_rmsle) if cur_rmsle < self.best_rmsle_list[month_ind]: self.is_best = True self.best_rmsle_list[month_ind] = cur_rmsle self.n_estimators_list[month_ind] = n_estimators_list[ month_ind] print 'best_n_estimators_list: %s' % self.n_estimators_list return rmsle_list
def new_game(): from Graphic_Element import draw_graphic_elements Globals.do_new_game = False Gameboard.random_Gameboard() Score.Reset_Score() Globals.selected_element = (-1, -1) Gameboard.check_availible_moves() set_start_time() set_game_state(Globals.Game_State.ready) Graphic_Element.clear_graphic_elements() Seeds.reset() while not Globals.do_quit: update_ticks() Globals.clock.tick() Globals.screen.fill((0, 0, 0)) draw_background() game_loop() for x in range(0, Gameboard.Gameboard_size): for y in range(0, Gameboard.Gameboard_size): obj = Gameboard.Gameboard[x][y] if (obj is not None): obj.update() obj.draw(x, y) if not Globals.selected_element == (-1, -1): element = get_selected_element() if element is not None: element.draw_box(Globals.selected_element) draw_score() Seeds.draw_seed_interface() if Globals.game_state != Globals.Game_State.game_over: draw_time_left() draw_graphic_elements(get_ticks()) pygame.display.flip() Globals.clock.tick_busy_loop(60) Globals.do_quit = False
def cross_validate(self, dataset, num_folds): dataset.createFolds(num_folds) best_params = None best_rmsle = float("inf") for C in SVMRegression.C_vals: for poly_degree in SVMRegression.poly_degrees: if self.debug: print "Running SVM regression with C=%d, poly_degree=%d on %d folds" %(C, poly_degree, num_folds) cur_score = Score.Score() for fold_ind in range(num_folds): fold_train = dataset.getTrainFold(fold_ind) fold_test = dataset.getTestFold(fold_ind) self._train_with_values(fold_train, poly_degree=poly_degree, C=C) cur_score.addFold(fold_test.getSales(), self.predict(fold_test)) cur_rmsle = cur_score.getRMSLE() if cur_rmsle < best_rmsle: if self.debug: print "Achieved new best score %f" %cur_rmsle best_params = (C, poly_degree) best_rmsle = cur_rmsle self.C, self.poly_degree = best_params
def __init__(self, d): self.doc = d self.maxLyrics = 0 self.lastVolta = 0 self.beamMode = BeamMode.BEAM_NO self.score = Score.Score(defaultStyle) self.measureLength = list()
def initialize_complex_map(N, groups, data_set, dataset_reduction_factor): the_map = np.zeros((N, N)) data_set_with_line_scores = [] for i in range(0, N): line_score = 0 for j in range(0, i): slide_first = data_set[i] slide_second = data_set[j] the_map[i][j] = sc.score(slide_first, slide_second) the_map[j][i] = the_map[i][j] line_score = line_score + the_map[i][j] data_set_with_line_scores.append((line_score, data_set[i])) # ax = sns.heatmap(the_map) # plt.show() data_set_with_line_scores.sort(key=lambda tup: tup[0]) # sorts in place print("sorted dataset from map with start:" + data_set_with_line_scores[0] + "and end:" + data_set_with_line_scores[len(data_set_with_line_scores)-1] + " scores.") desired_number_of_elements = N // dataset_reduction_factor # get last N elements reduced_data_set_with_scores = data_set_with_line_scores[-desired_number_of_elements:] print("reduced dataset from map with start potential score of:" + reduced_data_set_with_scores[0] + "and end:" + reduced_data_set_with_scores[ len(reduced_data_set_with_scores) - 1] + " scores.") # get only the slides reduced_data_set = [i[1] for i in reduced_data_set_with_scores] # get first N elements rest_of_reduced_population_with_scores = data_set_with_line_scores[N - desired_number_of_elements:] # get only the slides rest_of_reduced_population = [i[1] for i in rest_of_reduced_population_with_scores] return the_map, reduced_data_set, rest_of_reduced_population
def get_rmsle_list(self, dataset, num_folds, alpha_list, rho_list): self.num_iterations += 1 rmsle_list = [] score = Score.Score() for fold_ind in range(num_folds): fold_train = dataset.getTrainFold(fold_ind) fold_test = dataset.getTestFold(fold_ind) self._train(fold_train, alpha_list, rho_list) score.addFold(fold_test.getSales(), self.predict(fold_test)) for month_ind in range(12): cur_rmsle = score.getRMSLE(month_ind) rmsle_list.append(cur_rmsle) if cur_rmsle < self.best_rmsle_list[month_ind]: self.is_best = True self.best_rmsle_list[month_ind] = cur_rmsle self.alpha_list[month_ind] = alpha_list[month_ind] self.rho_list[month_ind] = rho_list[month_ind] print "alpha_list: %s" % alpha_list print "best_rho_list: %s" % str(self.rho_list) print "best_alpha_list: %s" % str(self.alpha_list) return rmsle_list
def __init__(self): super().__init__() self.setupUi(self) # self.donIndex_list = [] # self.don_list = [] # self.push_changeOrder.clicked.connect(self.push_changeOrder_clicked) # self.push_add.clicked.connect(self.push_add_clicked) # self.push_del.clicked.connect(self.push_del_clicked) # self.push_addBeat.clicked.connect(self.push_addBeat_clicked) # self.push_delBeat.clicked.connect(self.push_delBeat_clicked) # self.MAX_WIDTH = self.label_beat.width() # self.beatInfo = {'beats':[], 'hIndex':-1} self.label_beat.setFixedSize(self.scrollArea.height() * 2 / 3, self.scrollArea.height() * 2 / 3) self.horizontalLayout.addStretch(1) self.push_load.clicked.connect(self.push_load_clicked) self.push_save.clicked.connect(self.push_save_clicked) self.noteList = list() self.beatList = list() self.highlightBeatLabel = None self.score = Score.TJA() # print(self.label_beat.width()) # sample code self.push_create.clicked.connect(self.push_create_clicked) self.undoStack = QUndoStack(self) self.donList = [] self.donNum = 0
def initialize_complex_map(N, groups, data_set, ith_chunk_nr, number_of_chunks): desired_number_of_elements = N // number_of_chunks chunk_start_index = desired_number_of_elements * ith_chunk_nr chunk_end_index = min(N, chunk_start_index + desired_number_of_elements) the_map = np.zeros((N, N)) data_set_with_line_scores = [] for i in range(chunk_start_index, chunk_end_index): line_score = 0 for j in range(chunk_start_index, i): slide_first = data_set[i] slide_second = data_set[j] the_map[i][j] = sc.score(slide_first, slide_second) the_map[j][i] = the_map[i][j] line_score = line_score + the_map[i][j] data_set_with_line_scores.append((line_score, data_set[i])) # ax = sns.heatmap(the_map) # plt.show() data_set_with_line_scores.sort(key=lambda tup: tup[0]) # sorts in place return the_map
def reportMatch(tournament, winner, loser, draw='FALSE'): """ Reports a match's result to the database and assigns corresponding points to a player Args: tournament = id of tournament where the match took place winner = id of the winner loser = id of the loser draw = true if the match is a draw """ if draw == 'TRUE': wPoint = 1 lPoint = 1 else: wPoint = 3 lPoint = 0 Match.add(tournament, winner, loser) Score.add(tournament, winner, wPoint) Score.add(tournament, loser, lPoint)
def deleteMatches(): """Removes all match records from the database.""" Match.deleteAll() Score.reset()
def deletePlayers(): """Removes all player records from the database.""" Player.deleteAll() Score.deleteAll()
return data data = Encoding(data, general_matrix) test_data = Encoding(test_data, general_matrix) p = pca(n_components=2) pca_cal(standardize_dataset(data), labels.T[0].tolist(), data, title = "PCA with z-score normalization on training set") pca_cal(standardize_dataset(test_data), test_labels, test_data, title = "PCA with z-score normalization on test set") data[:, 4:] = standardize_dataset(data[:, 4:]) test_data[:, 4:] = standardize_dataset(test_data[:, 4:]) # Seperate dataset to test and train set kf = KFold(n=len(data), n_folds=10, shuffle=True) train, test = kf.get_indices() s = Score() total_cv_error = [] total_test_error = [] confusion_matx = [] f1score = [] for k in range(1, 100, 5): cv_error = [] test_error = [] nn = Pipeline([ ('feature_selection', SelectFromModel(LinearSVC(penalty="l2"))), ('classification', KNeighborsClassifier(n_neighbors=k, metric='manhattan')) ]) for i in range(10): print "round %d %d" % (k, i) train_data = data[train[i]]
def deleteScoreboard(): """Removes all score records from the database.""" Score.deleteAll()
# Simple Explorartory Analysis # Bar plots for col in data.columns: agg = data.groupby([col, 'class']).count() sns.set_style("whitegrid") ax = sns.barplot(x=agg.ix[:, [0]].index.values, y=agg.ix[:, [0]].values.T[0]) plt.title("Distribution of " + col) plt.show() # PCA pca_cal(standardize_dataset(ndata.as_matrix()), data['class'], data.columns, title="PCA with normalization") # Seperate dataset to test and train set kf = KFold(n=len(ndata), n_folds=10, shuffle=True) train, test = kf.get_indices() s = Score() total_train_error = [] total_test_error = [] for k in range(1, 200, 3): train_error = [] test_error = [] for i in range(10): print "round %d %d" % (k, i) train_data = ndata.ix[train[i]] test_data = ndata.ix[test[i]] #######TRAIN##### nn = NearestNeighborsClassifier(n_neighbors=k)
width = 900 height = 700 size = width, height bgColor = r,b,g = 255,255,255 screen = pygame.display.set_mode(size) balls = [] ballTimer = 0 ballTimerMax = 2 * 60 player = PlayerPaddle( ["Pics/Player/player.png"], [10,10], [10, 300]) player2 = PlayerPaddle( ["Pics/Player/player2.png"], [10,10], [880, 300]) scoreP1 = Score([300, 350]) scoreP2 = Score([600, 350]) endScore = 3 lastScore = random.randint(1,2) beginningScore = 0 while True: while scoreP1.score < endScore and scoreP2.score < endScore: for event in pygame.event.get(): if event.type == pygame.QUIT: sys.exit() elif event.type == pygame.KEYDOWN: if event.key == pygame.K_w: player.go("up")
Wall([550,150],[600,250]), Wall([100,450],[150,600]), #10 Wall([100,550],[250,600]), Wall([450,550],[600,600]), Wall([550,450],[600,600]), Wall([150,300],[250,400]), Wall([300,150],[400,250]), #15 Wall([450,300],[550,400]), Wall([300,450],[400,550]), #17 ] ghosts = [Ghost("purple", [random.randint(5, 8)*50+25,random.randint(5, 8)*50+25]), Ghost("blue", [random.randint(5, 8)*50+25,random.randint(5, 8)*50+25]), Ghost("green", [random.randint(5, 8)*50+25,random.randint(5, 8)*50+25])] score = Score("Score: ", (125,25)) lives = Score("Lives: ", (125,675)) while player.living and len(orbs) > 0: for event in pygame.event.get(): if event.type == pygame.QUIT: sys.exit() elif event.type == pygame.KEYDOWN: if event.key == pygame.K_UP: player.go("up") elif event.key == pygame.K_DOWN: player.go("down") elif event.key == pygame.K_LEFT: player.go("left") elif event.key == pygame.K_RIGHT: player.go("right") elif event.type == pygame.KEYUP:
"21", "22", "23", "31", "32", "33"] deadGhosts = {} files = os.listdir("Levels/") for f in files: if f[-4:] == ".sav": os.remove("Levels/"+f) lx = 1 ly = 1 level = Level("Levels/Map"+str(lx)+str(ly)) player = Manpac([7,7], (602,602)) score = Score("Score: ", 0, (125,25)) lives = Score("Lives: ", 5, (125,675)) while lives.score >= 5 and len(levelsLeft)>0: for event in pygame.event.get(): if event.type == pygame.QUIT: sys.exit() elif event.type == pygame.KEYDOWN: if event.key == pygame.K_w or event.key == pygame.K_UP: player.go("up") elif event.key == pygame.K_s or event.key == pygame.K_DOWN: player.go("down") elif event.key == pygame.K_a or event.key == pygame.K_LEFT: player.go("left") elif event.key == pygame.K_d or event.key == pygame.K_RIGHT: player.go("right") elif event.type == pygame.KEYUP:
import matplotlib.pyplot as plt import seaborn as sns from legacy_script import * from LeaveNOut import * from sklearn.svm import SVR import pdb data = pd.read_csv('Water_data.csv') # Split data into labels and features train_labels, train_data = np.hsplit(data, [3]) # Normalization train_data = standardize_dataset(train_data) train_labels = train_labels.as_matrix() #Try with different neighbors and different leave N out cross validation: for n in [1, 3]: plot_data = [] for i in range(1, 30, 1): model = NearestNeighborsRegressor(n_neighbors=i) runner = LeaveNOut() predict, true = runner.run(data=train_data, model=model, labels=train_labels, n_out=n) score = Score() plot_data.append([score.c_score(np.array(predict)[:, 0], np.array(true)[:, 0]), i, 'c_total']) plot_data.append([score.c_score(np.array(predict)[:, 1], np.array(true)[:, 1]), i, 'Cd']) plot_data.append([score.c_score(np.array(predict)[:, 2], np.array(true)[:, 2]), i, 'Pb']) line_plot(np.array(plot_data), title="C_index by different K Neighbors - Leave %s out CV" % n, x_title="K Neighbors", y_title="C-Index")
from kNN import NearestNeighborsRegressor from sklearn.neighbors import KNeighborsRegressor from Score import * import matplotlib.pyplot as plt import seaborn as sns from legacy_script import * from LeaveNOut import * from sklearn.svm import SVR import pdb input = pd.read_csv('./Soil_water_permeability_data/INPUT.csv',header=None) output = pd.read_csv('./Soil_water_permeability_data/OUTPUT.csv', header=None) coordinates = pd.read_csv('./Soil_water_permeability_data/COORDINATES.csv', header=None) # Normalization std_input = standardize_dataset(input) plot_data = [] for n in range(0,201,10): model = NearestNeighborsRegressor(n_neighbors=5) runner = LeaveNOut(zone_radius=n) predict, true = runner.run(data=std_input, model=model, labels=output.as_matrix(), n_out=1, coordinates = coordinates.as_matrix()) score = Score() plot_data.append([score.c_score(np.array(predict)[:, 0], np.array(true)[:, 0]), n, 'Concordance Index']) print "epoch %d " % n line_plot(np.array(plot_data), title="Concordance index by different Dead zone radius - Leave 1 out CV", x_title="Dead zone radius", y_title="C-Index")
if event.key == pygame.K_BACKSPACE: run = "menu" all.update(width, height) dirty = all.draw(screen) pygame.display.update(dirty) pygame.display.flip() clock.tick(60) for s in all.sprites(): s.kill() BackGround("RSC/Background/Illuminati.png", True, [0,-1]) score = Score([width-300, height-25], "Score: ", 80) spawnRate = .3 #seconds player1 = Player((width/2, height/2), 1) player2 = Player((width/2, height/2), 2) while run == "game": for event in pygame.event.get(): if event.type == pygame.QUIT: sys.exit() if event.type == pygame.KEYDOWN: if event.key == pygame.K_w: player1.go("up") if event.key == pygame.K_UP: player2.go("up") if event.key == pygame.K_d: