def test_progressbar(max_val, sleep_time=2): bar = Scoring.Bar(max_val) bar.start() for i in range(max_val): bar.update(i + 1) sleep(sleep_time) bar.finish() print("all is good")
def GridSearchPCA(estimator, params, Data, config, n_comp, name, location, states=3): df = CreateDataFrame(Data=Data, config=config) KFold = FE.KFold(Data.shape[2]) start = time() GRID = ParameterGrid(params) combinations = len(list(GRID)) print("Number of combinations {}".format(combinations)) bar = Scoring.Bar(combinations * 10) combo = 0 bar.start() for i, g in enumerate(GRID): score_tab = Scoring.ScoringTable(location=location, name=name + str(g) + str(i), n_states=states) for cross in range(Data.shape[0]): clf = copy(estimator) X_train, y_train, X_test, y_test = KFold.fit_transform( x=df, kFoldIndex=cross) scale = StandardScaler() X_train = scale.fit_transform(X=X_train, y=y_train) X_test = scale.transform(X=X_test) pca = PCA(n_components=n_comp) X_train = pca.fit_transform(X=X_train) X_test = pca.transform(X=X_test) clf.set_params(**g) pred = train_and_predict(model=clf, train=X_train, test=X_test, labels=y_train, unsupervised=False) score = Scoring.score(states=pred, results=np.array(y_test), unsupervised=False, pocet_stavu=states) score_tab.add(scores=score) combo += 1 bar.update(combo) score_tab.save_table() del score_tab info = copy(config) info["params"] = g with open(location + name + str(g) + str(i) + '_config.pickle', 'wb') as f: pickle.dump(info, f) bar.finish() print('Celý proces trval: {} vteřin'.format( np.around(time() - start, decimals=0))) print('Hotovo!!') return