Exemple #1
0
def aligned_psth_separate(psth, rr, npips, onset = 0.050, wind_offset = -0.020, ax = None, nshow = 6):

	ccycle = plt.rcParams['axes.color_cycle']

	period = 1./rr # period in ms
	nbins_period = np.round(1000*period).astype(int)

	wind_start = onset+wind_offset

	show_ix = np.round(np.linspace(0, npips-1, nshow)).astype(int)
	aligned_psth = np.empty((nshow, nbins_period))
	for i, ix in enumerate(show_ix):
		start_ix = np.round(1000*(wind_start+ix*period)).astype(int)
		stop_ix = start_ix+nbins_period
		aligned_psth[i, :] = psth[start_ix : stop_ix]

	if not ax is None:
		for i in xrange(nshow):
			color = ccycle[(nshow-(i+1))]
			lw = 7.25-(1.25*i)
			alpha = (2/7.)+(i/7.)
			ax.plot(Spikes.exp_smoo(aligned_psth[-(i+1), :]), color = color, lw = lw, alpha = alpha)

		ax.set_xlim((1000*(wind_start-0.010), 150))

	return aligned_psth
Exemple #2
0
def plot_stim_psth(stim_psth, stim_params):
	
	fig = plt.figure();
	nfreqs, nrrs, nbins = stim_psth.shape
	i = 0
	rrs = stim_params[1]
	for r in xrange(nrrs):
		for f in xrange(nfreqs):
			i += 1
			ax = fig.add_subplot(nrrs, nfreqs, i)
			ax.plot(Spikes.exp_smoo(stim_psth[f, r, :]))
			plot_tone_pips(rrs[r], rrs[r], 0.05, 0.025)

	plt.show();
Exemple #3
0
def plot_rrtf(t, psth, rr, npips, onset = 0.05, duration = 0.025, ax = None):

	ax, fig = misc.axis_check(ax)

	ax.plot(t, Spikes.exp_smoo(psth))
	plot_tone_pips(rr, npips, onset = onset, duration = duration, ax = ax, color = 'r')
Exemple #4
0
def rr_make_contactsheets():
	'''
	loop through all the sessions and plot the rrtfs
	'''

	fig = plt.figure(figsize = (30, 18));
	txt_suptitle = fig.suptitle('')
	ax_cfrrtf = fig.add_axes((0.76, 0.76, 0.24, 0.23));
	ax_cfvs = ax_cfrrtf.twinx();
	ax_cfcircpsthall = fig.add_axes((0.62, (11/14.)-0.02, 0.1, (1/7.)+0.04), polar = True)
	ax_cfcircpsthall.set_xticklabels(''); ax_cfcircpsthall.set_yticklabels('');
	ax_rf = fig.add_axes((0.67, 0.51, 0.33, 0.23));
	ax_rfrast = fig.add_axes((0.67, 0.25, 0.33, 0.24));
	ax_rfrast.set_xticklabels('');
	ax_rfpsth = fig.add_axes((0.67, 0.01, 0.33, 0.24));

	ax_cfrr = [fig.add_axes((0.03, 1-((i+1)/7.), 0.35, 1/7.)) for i in np.arange(nrrs)]
	ax_cfalignedpsth = [fig.add_axes((0.38, 1-((i+1)/7.), 0.17, 1/7.)) for i in np.arange(nrrs)]
	ax_cfcircpsth = [fig.add_axes((0.53, 1-((i+1)/7.), 0.1, 1/7.), polar = True) for i in np.arange(nrrs)]
	# ax_noiserr = [fig.add_subplot(nrrs, 3, i) for i in np.arange(1, 3*nrrs, 3)]

	for sessionpath in sessionpaths:

		session = os.path.split(sessionpath)[1]
		unitinfos = fileconversion.get_session_unitinfo(sessionpath, onlycomplete = ('RF', 'RR', 'VOC'))
			
		for unitkey in unitinfos.keys():
			
			txt_suptitle.set_text('%s %s' % (session, unitkey))

			unitinfo = unitinfos[unitkey]

			rf_ix = unitinfo['stimtype'].index('RF')
			
			f_rf = h5py.File(unitinfo['fpath'][rf_ix], 'r')
			rf_rast = f_rf['rast'].value
			rf_stimparams = f_rf['stimID'].value
			cf_ix = f_rf['cf'].value
			f_rf.close()
			
			cf = ix2freq[20:][int(cf_ix)]

			''' calculate and plot RF, psth, and sorted raster'''
			rf = RF.calc_rf(rf_rast, rf_stimparams)
			rf_psth = Spikes.calc_psth(rf_rast)
			RF.plot_rf(rf, cf = cf_ix, axes_on = False, ax = ax_rf) # plot RF
			ax_rf.axvline(cf_ix, color = 'r', lw = 1.5)
			Spikes.plot_sorted_raster(rf_rast, rf_stimparams, ax = ax_rfrast) # plot raster
			ax_rfpsth.plot(t_rf, Spikes.exp_smoo(rf_psth, tau = 0.005)) # plot PSTH

			''' calcualte and plot RRTFs for CF and noise stimuli '''
			rr_ix = unitinfo['stimtype'].index('RR')
			
			f_rr = h5py.File(unitinfo['fpath'][rr_ix], 'r')
			rr_rast = f_rr['rast'].value
			rr_stimparams = f_rr['stimID'].value
			f_rr.close()

			# find the played CF
			rr_ufreqs = np.unique(rr_stimparams[:, 0])
			urrs = np.unique(rr_stimparams[:, 1])
			npips = (urrs*4).astype(int)
			rr_freq, rr_ufreq_ix, _ = misc.closest(rr_ufreqs, cf, log = True)

			ax_rf.axvline(RF.calc_freq2ix(rr_freq), color = 'g', lw = 1.5)
			# calculate the PSTHs for each repetition rate
			tmp = Spikes.calc_psth_by_stim(rr_rast, rr_stimparams)
			rr_cfpth = tmp[0][rr_ufreq_ix, :, :]
			# rrtf_noisepsth = tmp[0][0, :, :]

			# plot the aligned psths
			RR.aligned_psth_separate_all(rr_rast, rr_stimparams, rr_freq, npips, axs = ax_cfalignedpsth)
			[a.set_yticklabels('') for a in ax_cfalignedpsth]
			[a.set_xticklabels('') for a in ax_cfalignedpsth[:-1]]

			# plot circular psths
			r, V, theta = RR.circ_psth_all(rr_rast, rr_stimparams, rr_freq, npips, axs = ax_cfcircpsth)
			[a.set_yticklabels('') for a in ax_cfcircpsth]
			[a.set_xticklabels('') for a in ax_cfcircpsth]

			# plot all circular summed vector strengths
			ax_cfcircpsthall.plot(theta, V, '.-')
			[ax_cfcircpsthall.plot([0, th], [0, v], color = 'b', alpha = 1-(i/10.)) for i, (th, v) in enumerate(zip(theta, V))]


			# plot RRTF
			rrtf = RR.calc_rrtf_all(rr_rast, rr_stimparams, rr_freq, urrs, npips)
			ax_cfrrtf.plot(rrtf, '.-', ms = 10)
			ax_cfvs.plot(V*np.cos(theta), 'g.-', ms = 10)
			for tick in ax_cfvs.yaxis.get_major_ticks():
				tick.set_pad(-5)
				tick.label2.set_horizontalalignment('right')

			# plot repetition rate PSTHs
			for i in xrange(nrrs):
				# RR.plot_rrtf(t_rrtf, rrtf_noisepsth[i, :], urrs[i], int(4*urrs[i]), onset = 0.05, duration = 0.025, ax = ax_noiserr[i])
				RR.plot_rrtf(t_rrtf, rr_cfpth[i, :], urrs[i], int(4*urrs[i]), onset = 0.05, duration = 0.025, ax = ax_cfrr[i])

			# ax_noiserr[0].set_title('Noise RRTFs')
			ax_cfrr[0].set_title('CF RRTFs (%.0f kHz)' % (cf/1000))
			# [a.set_xlim(0, 4.5) for a in ax_noiserr]
			[a.set_xlim(0, 4.5) for a in ax_cfrr]
			misc.sameyaxis(ax_cfrr+ax_cfalignedpsth)

			figsavepath = os.path.join(studydir, 'Sheets', 'RRTFs', '%s_%s_RRTF.png' % (session, unitkey))
			print figsavepath
			fig.savefig(figsavepath)
			[a.cla() for a in fig.get_axes()] # clear all axes
Exemple #5
0
def characterize(sesss = sesss, experiment = 'Fmr1_RR', pplot = True, verbose = False):

	if type(sesss) == str:
		sesss = [sesss]

	# set up figure
	figsize = (12, 12)
	fig = plt.figure(figsize = figsize)

	# loop through sesss
	for sess in sesss:

		DB = np.empty(0, dtype = dtype)
		
		print '%s\n%s\n\n' % (sess, '-'*50)
		
		# build the output directory path
		savedir = os.path.join(basedir, experiment, 'Sessions', sess, 'analysis')
		if not os.path.exists(savedir):
			os.mkdir(savedir)
			
		# WT or KO / CTL or EXP
		gen, exp, date = sess.split('_')

		# find the RF blocks
		pens = glob.glob(os.path.join(basedir, experiment, 'Sessions', sess, 'fileconversion', 'RF*.h5'))

		# load the cfs for this sess
		cfs = np.loadtxt(os.path.join(basedir, experiment, 'Sessions', sess, 'cfs.txt'), ndmin = 1)
		
		# loop through blocks in this sess
		for pen in pens:
			
			absol, relat = os.path.split(pen)
			blockname = os.path.splitext(relat)[0]

			# get unit number from filename
			unitnum = np.int32(p.findall(relat))[0] # unit number
			ix = cfs[:, 0] == unitnum
			if ix.sum() > 0:
				cf_man = cfs[ix, 1][0]
				if verbose:
					print pen
			
				# load the RF block
				f = h5py.File(pen, 'r')
				spktimes = f['spktimes'].value
				# if not np.isnan(spktimes[0]):

				'''--------RF--------'''
				# load the RF block to get the RF
				rf = f['rf'].value;	rast = f['rast'].value; spktimes = f['spktimes'].value; stimparams = f['stimID'].value; spktrials = f['spktrials'].value; coord = f['coord'].value; ntrials = f['rast'].shape[0]; f.close()

				# calculate the psth (spk/s*trial, normalized by number of trials
				psth = Spikes.calc_psth(rast, normed = True) # spk/s
			
				# baseline firing rate
				base_mean = psth[:stim_on].mean() # spk/s
			
				# response onset/offset
				psth_smoo = Spikes.exp_smoo(psth, tau = 0.003) 
				resp_on, resp_off = Spikes.calc_on_off(psth_smoo, stim_on = stim_on)
			
				# rewindowed RF
				rf_rewin = RF.calc_rf(rast, stimparams, resp_on = resp_on + stim_on - 3, resp_off = resp_off + stim_on + 3, normed = True)
			
				# thresholded RF
				rf_thresh = rf_rewin.copy()
				rf_threshold = np.percentile(rf_thresh, 66)# upper quartile
				rf_peak = rf_rewin.max()
				rf_thresh[rf_thresh < rf_threshold] = 0
			
				# find maximum RF cluster
				(rf_clust, clust_sizes) = RF.findmaxcluster(rf_thresh, cf = cf_man, include_diagonal = False)
				# if clust_sizes.max() < 10: # if it's a tiny RF, set it to nans
				# 	rf_clust = np.empty(rf_clust.shape) * np.nan
			
				rf_mask = rf_clust > 0
				# find evoked psth
				ev_psth = RF.calc_evoked_psth(rast, stimparams, rf_mask)
				ev_psth_smoo = Spikes.exp_smoo(ev_psth, tau = 0.003)
				ev_resp_on, ev_resp_off = Spikes.calc_on_off(ev_psth_smoo, stim_on = stim_on)
				ev_mean = ev_psth[ev_resp_on : ev_resp_off].mean()
				
				# bandwidth and threshold
				bw, bw_lr, _, thresh = RF.calc_bw_cf_thresh(rf_mask)

				# center of mass
				com = RF.calc_rf_com(rf_clust)
				tip_top = np.max([thresh-2, 0])
				tip_bottom = thresh
				com_tip = RF.calc_rf_com(rf_clust[tip_top:tip_bottom, :])

				'''PLOT'''
				if pplot:
					
					rf1_ax = fig.add_subplot(221)
					rf2_ax = fig.add_subplot(222)
					psth1_ax = fig.add_subplot(223)
					psth2_ax = fig.add_subplot(224)
					
					RF.plot_RF(rf, bw_lr = bw_lr, thresh = thresh, cf = cf_man, ax = rf1_ax)
					RF.plot_RF(rf_clust, bw_lr = bw_lr, thresh = thresh, cf = cf_man, ax = rf2_ax)
					rf2_ax.axvline(com, color = 'g', ls = '--')
					rf2_ax.axvline(com_tip, color = 'b', ls = '--')
				
					psth1_ax.plot(psth_smoo)
					psth2_ax.plot(ev_psth_smoo)
					psth1_ax.axvline(resp_on+stim_on, color = 'r', ls = '--')
					psth1_ax.axvline(resp_off+stim_on, color = 'r', ls = '--')
				
					figpath = os.path.join(savedir, blockname + '.png')
					fig.savefig(figpath);
					fig.clf()
				'''PLOT'''
			

				DB.resize(DB.size + 1)
				DB[-1] = np.array((gen, exp, sess, unitnum, \
					psth[:333], ev_psth[:333], \
					rf, rf_clust, \
					cf_man, com, com_tip, \
					bw, bw_lr, thresh, coord, \
					resp_on, resp_off, ev_resp_on, ev_resp_off, \
					base_mean, ev_mean), dtype = dtype)
		
			# end unit loop
	
			np.savez(os.path.join(basedir, experiment, 'Sessions', sess, sess + '_RF.npz'), DB = DB)
		if verbose:
			print '\n'*4