return [ float('%1.4f'%(x/(vMax*1.0)*normalizeTo)) for x in L] excelfile = sys.argv[1] _selection_gradient_ = sys.argv[2] _inducer_gradient_ = sys.argv[3] expt1 = Experiment(excelfile) CurveFit_params = {} Residual_RMSD = {} #plate_to_excel = ['A1','B2','C3','D4','E5','F6','G7','H8' ] for keys in plate_to_excel: timepoints = [] well = TimeCourse(keys, expt1.extract_timecourse(keys)) y = np.array(normList(well.data()))# !!! normalizes to 1 # y = np.array(well.data()) for i in range(len(well.data())): timepoints.append(i+1) x = np.array(timepoints) fitdata = ModifiedRichards(x, y) fitdata.Plot_CurveFit(keys) if not CurveFit_params.has_key(keys): CurveFit_params[keys] = [] CurveFit_params[keys] = fitdata.Get_Coefficients() if not Residual_RMSD.has_key(keys): Residual_RMSD[keys] = float('%5.4f'%fitdata.Get_Residuals_RMSD()) #print Residual_RMSD
def Help(): print 'This script generates a plot of differences in mean/median growth rate across adjacent wells for a fixed selection or inducer value' print 'Usage: <excel sheet>' exit() excelfile = sys.argv[1] expt1 = Experiment(excelfile) plate_row = ['A','B','C','D','E','F','G','H'] diff_data = {} for items in plate_row: junk = [] for i in range(12): if i+2<=12: first_well = '%s%s'%(items,i+2) second_well = '%s%s'%(items,i+1) tmp1 = TimeCourse(first_well,expt1.extract_timecourse(first_well)) tmp2 = TimeCourse(second_well, expt1.extract_timecourse(second_well)) diff = tmp2.median() - tmp1.median() junk.append(float('%1.4f'%diff)) if not diff_data.has_key(items): diff_data[items] = [] diff_data[items] = junk for keys in diff_data: outfile = open('%s_outfile'%keys,'w') for items in diff_data[keys]: outfile.write('%s\n'%items) outfile.close()