def crossValidation(tweetList, k,maxNgram):
    m=80
    n=50
    for i in xrange(k):

        trainSet,testSet = divideDataset(tweetList,k,i)
        trainDist = utils.obtainNgrams(trainSet,maxNgram)
        confidenceDict=utils.learnNgramConfidencefromData(trainDist,trainSet)
        predicted, true=utils.evaluateNgramRakingSet(testSet,trainDist, confidenceDict,m,n)
        # utils.printJeroni(true,predicted,i)
        utils.printResults(testSet, predicted, i)
def crossValidationLinearInterpolation(tweetList, k, maxNgram):
    for i in xrange(k):
        trainSet, testSet = divideDataset(tweetList, k, i)
        trainDist, arrayLanguages, languagesAll = utils.obtainNgrams(trainSet, maxNgram)
        linearCoefficients = linear.getlinearcoefficientsForLanguageArray(arrayLanguages, maxNgram, trainDist)
        print linearCoefficients
        count = 0
        tot = 0

        for tweet in testSet:
            predictedLanguage, probability = linear.getPredictedLanguageForTweet(linearCoefficients, tweet.text, maxNgram, trainDist)
            utils.printResultTXT(predictedLanguage, tweet)

            if(predictedLanguage == tweet.language):
                count = count + 1;
            tot = tot +1
            # print str(count)+'/'+str(tot)
        print 'correct tweets fold '+str(i)+' = '+str(count)+'/'+str(tot)
tweetListPreProcessed_train = preprocess.main(tweetList_train)
tweetListPreProcessed_test = preprocess.main(tweetList_test)
# shuffle(tweetListPreProcessed)

# 3-. Algorithms

# 3.1-. Algorithms: Bayesian Networks
#   3.2.1-. Linear interpolation
#       Generate linear coefficients: input (n-grams and language)
#       Smooth data

# cv.crossValidationLinearInterpolation(tweetListPreProcessed_train, 3, maxNgram)
linearCoefficientsAll = list()

trainDist, arrayLanguages, languagesAll = utils.obtainNgrams(tweetListPreProcessed_train, maxNgram)
for gram in xrange(1, maxNgram+1):
    linearCoefficientsAll.append(linear.getlinearcoefficientsForLanguageArray(arrayLanguages, gram, trainDist))

print linearCoefficientsAll

# linearCoefficientsALL = read.readLinearCoefficients(LI_Coefficients)


count = 4 # Desde que gram empezar

for i in xrange(count, maxNgram):
    count = count + 1
    t0 = time.time()

    for tweet in tweetListPreProcessed_test:
Exemple #4
0
tweetListtest = read.read_tweets_dataset(test)
# 2-. Pre-process state

tweetListPreProcessed = preprocess.main(tweetList)
tweetListPreProcessedtest= preprocess.main(tweetListtest)
shuffle(tweetListPreProcessed)
    # Raw data -> tweetList
    # Clean data -> tweetListPreProcessed

#utils.printTweets(tweetListPreProcessed)

# 3-. Algorithms
#
# 3.1-. OBTAIN N-GRAMS

corpusNgrams, arrayLanguages, arrayLanguagesFull = utils.obtainNgrams(tweetListPreProcessed, maxNgram+1)
arrayLanguagesFull = utils.orderVector(arrayLanguagesFull)

# Example:  print(corpusNgrams.get(str(3)).get('pt'))


# 3.2-. Algorithms: Bayesian Networks
#   3.2.1-. Linear interpolation
#       Generate linear coefficients: input (n-grams and language)
#       Smooth data


tweetEN = "Tomorrow is going to be a good day to go to the beach."
tweetPT = "Amanhã será um dia muito bom, como ir para a praia."
tweetCA = "Demà farà un dia molt bo, com per anar a la platja."
tweetEU = "Bihar egun oso ona egingo du, hondartzara joateko modukoa."
# _____________________________________________________________________________


# 1-. Read dataset and create tweetList fullfilled of Tweet object*

dataset = sys.argv[1]
maxNgram = int(sys.argv[2])

filename = os.path.basename(dataset).split('.')

tweetList = read.read_tweets_dataset(dataset)

# 2-. Pre-process state
    # Raw data -> tweetList
    # Clean data -> tweetListPreProcessed
tweetListPreProcessed = preprocess.main(tweetList)

# 3-. OBTAIN N-GRAMS and Linear Coefficients

for i in xrange(5, maxNgram+1):
    corpusNgrams, arrayLanguages,arrayLanguagesFull = utils.obtainNgrams(tweetListPreProcessed, i+1)
    linearCoefficients = linear.getlinearcoefficientsForLanguageArray(arrayLanguages, i, corpusNgrams)
    # print linearCoefficients
    file = open('../Dataset/LICoefficients_'+str(maxNgram)+'gram_for-'+str(filename[0])+'.txt', 'a+')
    for li in linearCoefficients:
        file.write(str(i)+"\t"+str(li[0]))
        for co in xrange(1, i+1):
            file.write("\t"+str(li[co]))
        file.write("\n")
file.close()