Exemple #1
0
#print('s3 mean is', mean_s3 * 1000, 'mm')
#print('s3 std is', std_s3 * 1000, 'mm')
#print('s3 count is', count_s3)

#print('s1 is', s1b_2)
#print('s2 is', s2b_2)
#print('s3 is', s3b_2)
# solve common base transformation
rot, t = solve_commonbase(s1b, s2b, s3b)
print('rot is', rot)
print('t is', t)

#print('old ball position is', ball)
#ball_tem = np.insert(ball, 3, 1.0)
#ball_new = np.matmul(convert_homo_transform(rot, t), ball_tem)
#print('new ball position is', ball_new)
#s1_tem = np.insert(s1b_2, 3, 1.0)
#print('old s1 is', s1b_2)
#print('new s1 is', np.matmul(convert_homo_transform(rot, t), s1_tem))

kdl_final = convert_Yomi_convention(kdl_tem, rot, t)
kdl_result = base + "\\tracker_kdl.csv"
print('kdl_final is', kdl_final)
Yomiwrite.write_csv_array(kdl_result, kdl_final)

exit()

#result_file = base + folder + "\\Yomisettings.csv"
result_file = base + "\\Yomisettings_debug.csv"
Yomiwrite.write_csv_array(result_file, kdl1, fmt="%.8f")
Exemple #2
0
                label='rigid registration mismatch')
    plt.scatter(range(len(affine_mismatch_error)),
                affine_mismatch_error,
                color='g',
                label='affine registration mismatch')
    plt.scatter(range(len(init_mismatch_error)),
                init_mismatch_error,
                color='b',
                label='initial registration mismatch')
    plt.scatter(range(len(curvilinear_mismatch_error)),
                curvilinear_mismatch_error,
                color='y',
                label='curvilinear correction mismatch')

    mismatch_rigid_file = 'G:\\My Drive\\Project\\IntraOral Scanner Registration\\rigid_mismatch.csv'
    Yomiwrite.write_csv_array(mismatch_rigid_file, rigid_mismatch_error)
    mismatch_affine_file = 'G:\\My Drive\\Project\\IntraOral Scanner Registration\\affine_mismatch.csv'
    Yomiwrite.write_csv_array(mismatch_affine_file, affine_mismatch_error)
    mismatch_init_file = 'G:\\My Drive\\Project\\IntraOral Scanner Registration\\initial_mismatch.csv'
    Yomiwrite.write_csv_array(mismatch_init_file, init_mismatch_error)
    mismatch_curvilinear_file = 'G:\\My Drive\\Project\\IntraOral Scanner Registration\\curvilinear_mismatch.csv'
    Yomiwrite.write_csv_array(mismatch_curvilinear_file,
                              curvilinear_mismatch_error)

    # Plotting for checking principal axes - Start
    # fig6 = plt.figure(6)
    # plt.scatter(range(len(x1_angle_mismatch_rigid)), x1_angle_mismatch_rigid, color = 'r', label='x1 rigid registration error')
    # plt.scatter(range(len(x1_angle_mismatch_affine)), x1_angle_mismatch_affine, color='g', label='x1 affine registration error')
    # plt.scatter(range(len(x1_angle_mismatch_init)), x1_angle_mismatch_init, color='b', label='x1 initial registration error')
    #
    # fig7 = plt.figure(7)
Exemple #3
0
    i = 5
    cylinder_base, cylinder_axis = check_cylinder_base_full(
        accuracy_raw, 1, 7, reference='cylinder')
    faro_base, faro_axis = check_cylinder_base_full(faro_raw,
                                                    1,
                                                    7,
                                                    axis='y',
                                                    reference='cylinder')

    pos_error, height_error, angular_error = estimate_full_relative(
        cylinder_base, cylinder_axis, faro_base)
    pos_error2, height_error2, angular_error2 = estimate_full_absolute(
        cylinder_base, cylinder_axis, faro_base, faro_axis, i)
    Yomiwrite.write_csv_array(
        base_path + '\\results\\' + 'correction_pos_error' + np.str(i) +
        '.txt', pos_error2)
    Yomiwrite.write_csv_array(
        base_path + '\\results\\' + 'correction_height_error' + np.str(i) +
        '.txt', height_error2)
    Yomiwrite.write_csv_array(
        base_path + '\\results\\' + 'correction_angular_error' + np.str(i) +
        '.txt', angular_error2)
    plt.show()

    exit()
    # the code below is working for accuracy, don't delete

    i = 0
    for item in os.listdir(base_path + '\\stl_measurements'):
        i += 1
s1 = Yomiread.read_calibration_measurements(base +
                                            '\\divot_s1_jointangles.m')[:,
                                                                        6:13]
s2 = Yomiread.read_calibration_measurements(base +
                                            '\\divot_s2_jointangles.m')[:,
                                                                        6:13]
s3 = Yomiread.read_calibration_measurements(base +
                                            '\\divot_s3_jointangles.m')[:,
                                                                        6:13]
#s3 = Yomiread.read_calibration_measurements(base + folder + '\\divot_s3_jointangles.m' )[:, 6:13]

# Add 3 degree off on J3
sb_offset = sb
mb_offset = mb
lb_offset = lb
offset = 3.1459 * np.pi / 180
for i in range(len(sb)):
    sb_offset[i, :] = sb[i, :] + [0, 0, offset, 0, 0, 0, 0]
for j in range(len(mb)):
    mb_offset[i, :] = mb[i, :] + [0, 0, offset, 0, 0, 0, 0]
for j in range(len(lb)):
    lb_offset[i, :] = lb[i, :] + [0, 0, offset, 0, 0, 0, 0]

kdl1 = opt_full(sb_offset, sb_bb, mb_offset, mb_bb, lb_offset, lb_bb, s1, s2,
                s3)
exit()

#result_file = base + folder + "\\Yomisettings.csv"
result_file = base + "\\Yomisettings_debug.csv"
Yomiwrite.write_csv_array(result_file, kdl1, fmt="%.8f")