def test_threshold_analyze(): try: if not os.path.exists('test_items'): os.makedirs('test_items') item_file = 'test_items/data.item' feature_file = 'test_items/data.features' distance_file = 'test_items/data.distance' scorefilename = 'test_items/data.score' taskfilename = 'test_items/data.abx' analyzefilename = 'test_items/data.csv' threshold = 2 items.generate_db_and_feat(3, 3, 1, item_file, 2, 3, feature_file) task = ABXpy.task.Task(item_file, 'c0', 'c1', 'c2') task.generate_triplets(taskfilename, threshold=threshold) distances.compute_distances(feature_file, '/features/', taskfilename, distance_file, dtw_cosine_distance, normalized=True, n_cpu=1) score.score(taskfilename, distance_file, scorefilename) analyze.analyze(taskfilename, scorefilename, analyzefilename) number_triplets = np.loadtxt(analyzefilename, dtype=int, delimiter='\t', skiprows=1, usecols=[-1]) assert np.all(number_triplets == threshold) finally: shutil.rmtree('test_items', ignore_errors=True)
def test_analyze(): try: if not os.path.exists('test_items'): os.makedirs('test_items') item_file = 'test_items/data.item' feature_file = 'test_items/data.features' distance_file = 'test_items/data.distance' scorefilename = 'test_items/data.score' taskfilename = 'test_items/data.abx' analyzefilename = 'test_items/data.csv' items.generate_db_and_feat(3, 3, 1, item_file, 2, 3, feature_file) task = ABXpy.task.Task(item_file, 'c0', 'c1', 'c2') task.generate_triplets(taskfilename) distances.compute_distances(feature_file, '/features/', taskfilename, distance_file, dtw_cosine_distance) score.score(taskfilename, distance_file, scorefilename) analyze.analyze(taskfilename, scorefilename, analyzefilename) finally: try: os.remove(item_file) os.remove(feature_file) os.remove(taskfilename) os.remove(distance_file) os.remove(scorefilename) os.remove(analyzefilename) # pass except: pass
def test_analyze(): try: if not os.path.exists('test_items'): os.makedirs('test_items') item_file = 'test_items/data.item' feature_file = 'test_items/data.features' distance_file = 'test_items/data.distance' scorefilename = 'test_items/data.score' taskfilename = 'test_items/data.abx' analyzefilename = 'test_items/data.csv' items.generate_db_and_feat(3, 3, 1, item_file, 2, 3, feature_file) task = ABXpy.task.Task(item_file, 'c0', 'c1', 'c2') task.generate_triplets(taskfilename) distances.compute_distances(feature_file, '/features/', taskfilename, distance_file, dtw_cosine_distance, normalized=True, n_cpu=1) score.score(taskfilename, distance_file, scorefilename) analyze.analyze(taskfilename, scorefilename, analyzefilename) finally: shutil.rmtree('test_items', ignore_errors=True)
def test_threshold_analyze(): try: if not os.path.exists('test_items'): os.makedirs('test_items') item_file = 'test_items/data.item' feature_file = 'test_items/data.features' distance_file = 'test_items/data.distance' scorefilename = 'test_items/data.score' taskfilename = 'test_items/data.abx' analyzefilename = 'test_items/data.csv' threshold = 2 items.generate_db_and_feat(3, 3, 1, item_file, 2, 3, feature_file) task = ABXpy.task.Task(item_file, 'c0', 'c1', 'c2') task.generate_triplets(taskfilename, threshold=threshold) distances.compute_distances( feature_file, '/features/', taskfilename, distance_file, dtw_cosine_distance, normalized = True, n_cpu=1) score.score(taskfilename, distance_file, scorefilename) analyze.analyze(taskfilename, scorefilename, analyzefilename) number_triplets = np.loadtxt(analyzefilename, dtype=int, delimiter='\t', skiprows=1, usecols=[-1]) assert np.all(number_triplets == threshold) finally: try: shutil.rmtree('test_items') # os.remove(item_file) # os.remove(feature_file) # os.remove(taskfilename) # os.remove(distance_file) # os.remove(scorefilename) # os.remove(analyzefilename) except: pass
def test_score(): try: if not os.path.exists('test_items'): os.makedirs('test_items') item_file = 'test_items/data.item' feature_file = 'test_items/data.features' distance_file = 'test_items/data.distance' scorefilename = 'test_items/data.score' taskfilename = 'test_items/data.abx' items.generate_db_and_feat(3, 3, 1, item_file, 2, 3, feature_file) task = ABXpy.task.Task(item_file, 'c0', 'c1', 'c2') task.generate_triplets() distances.compute_distances( feature_file, '/features/', taskfilename, distance_file, dtw_cosine_distance, normalized = True, n_cpu=3) score.score(taskfilename, distance_file, scorefilename) finally: try: shutil.rmtree('test_items') # os.remove(item_file) # os.remove(feature_file) # os.remove(taskfilename) # os.remove(distance_file) # os.remove(scorefilename) except: pass
def test_score(): try: if not os.path.exists('test_items'): os.makedirs('test_items') item_file = 'test_items/data.item' feature_file = 'test_items/data.features' distance_file = 'test_items/data.distance' scorefilename = 'test_items/data.score' taskfilename = 'test_items/data.abx' items.generate_db_and_feat(3, 3, 1, item_file, 2, 3, feature_file) task = ABXpy.task.Task(item_file, 'c0', 'c1', 'c2') task.generate_triplets() distances.compute_distances(feature_file, '/features/', taskfilename, distance_file, dtw_cosine_distance, normalized=True, n_cpu=3) score.score(taskfilename, distance_file, scorefilename) finally: try: shutil.rmtree('test_items') # os.remove(item_file) # os.remove(feature_file) # os.remove(taskfilename) # os.remove(distance_file) # os.remove(scorefilename) except: pass
def fullrun(): if not os.path.exists('example_items'): os.makedirs('example_items') item_file = 'example_items/data.item' feature_file = 'example_items/data.features' distance_file = 'example_items/data.distance' scorefilename = 'example_items/data.score' taskfilename = 'example_items/data.abx' analyzefilename = 'example_items/data.csv' # deleting pre-existing files for f in [item_file, feature_file, distance_file, scorefilename, taskfilename, analyzefilename]: try: os.remove(f) except OSError: pass # running the evaluation items.generate_db_and_feat(3, 3, 5, item_file, 2, 2, feature_file) task = ABXpy.task.Task(item_file, 'c0', across='c1', by='c2') task.generate_triplets(taskfilename) distances.compute_distances( feature_file, '/features/', taskfilename, distance_file, dtw_cosine_distance, normalized=True, n_cpu=1) score.score(taskfilename, distance_file, scorefilename) analyze.analyze(taskfilename, scorefilename, analyzefilename)
def fullrun(): if not os.path.exists('example_items'): os.makedirs('example_items') item_file = 'example_items/data.item' feature_file = 'example_items/data.features' distance_file = 'example_items/data.distance' scorefilename = 'example_items/data.score' taskfilename = 'example_items/data.abx' analyzefilename = 'example_items/data.csv' items.generate_db_and_feat(3, 3, 1, item_file, 2, 2, feature_file) task = ABXpy.task.Task(item_file, 'c0', 'c1', 'c2', features=feature_file) task.generate_triplets() distances.compute_distances(feature_file, '/features/', taskfilename, distance_file, dtw_cosine_distance) score.score(taskfilename, distance_file, scorefilename) analyze.analyze(scorefilename, taskfilename, analyzefilename)