def setUpClass(cls):
        """
        Compile the network for this test
        """
        neuron = Neuron(
            equations="r = 1"
        )

        neuron2 = Neuron(
            equations="r = sum(exc)"
        )

        pop1 = Population((3, 3), neuron)
        pop2 = Population((3, 3), neuron2)

        proj1 = Projection(pre=pop1, post=pop2, target="exc")
        proj2 = Projection(pre=pop1, post=pop2, target="exc")
        proj3 = Projection(pre=pop1, post=pop2, target="exc")

        proj1.connect_one_to_one(weights=0.1)
        proj2.connect_all_to_all(weights=0.1)
        proj3.connect_fixed_number_pre(3, weights=0.1)

        cls.test_net = Network()
        cls.test_net.add([pop1, pop2, proj1, proj2, proj3])
        cls.test_net.compile(silent=True)

        cls.test_proj1 = cls.test_net.get(proj1)
        cls.test_proj2 = cls.test_net.get(proj2)
        cls.test_proj3 = cls.test_net.get(proj3)
Exemple #2
0
    def setUpClass(cls):
        """
        Compile the network for this test
        """
        neuron = Neuron(equations="r = 1")

        neuron2 = Neuron(equations="r = sum(exc)")

        pop1 = Population((3, 3), neuron)
        pop2 = Population((3, 3), neuron2)

        proj1 = Projection(pre=pop1, post=pop2, target="exc")
        proj2 = Projection(pre=pop1, post=pop2, target="exc")
        proj3 = Projection(pre=pop1, post=pop2, target="exc")

        proj1.connect_one_to_one(weights=0.1)
        proj2.connect_all_to_all(weights=0.1)
        proj3.connect_fixed_number_pre(3, weights=0.1)

        cls.test_net = Network()
        cls.test_net.add([pop1, pop2, proj1, proj2, proj3])
        cls.test_net.compile(silent=True)

        cls.test_proj1 = cls.test_net.get(proj1)
        cls.test_proj2 = cls.test_net.get(proj2)
        cls.test_proj3 = cls.test_net.get(proj3)
    def setUpClass(cls):
        """
        Compile the network for this test.

        The input_neuron will generate a sequence of values:

            r_t = [-1, 0, 2, 5, 9, 14, 20, ...]
        """
        input_neuron = Neuron(equations="""
                r = r + t : init = -1
            """)

        neuron2 = Neuron(equations="""
                r = sum(ff)
            """)

        pop1 = Population((3), input_neuron)
        pop2 = Population((3), neuron2)

        # A projection with non-uniform delay
        proj = Projection(pop1, pop2, target="ff")
        proj.connect_one_to_one(weights=1.0, delays=Uniform(1, 5))

        # Build up network
        cls.test_net = Network()
        cls.test_net.add([pop1, pop2, proj])
        cls.test_net.compile(silent=True)

        # Store references for easier usage in test cases
        cls.net_proj = cls.test_net.get(proj)
        cls.net_pop1 = cls.test_net.get(pop1)
        cls.net_pop2 = cls.test_net.get(pop2)
    def setUpClass(cls):
        """
        Compile the network for this test.

        The input_neuron will generate a sequence of values:

            r_t = [-1, 0, 2, 5, 9, 14, 20, ...]

        one time as global (glob_r) and one time as local variable (r).
        """
        input_neuron = Neuron(equations="""
                glob_r = glob_r + t : init = -1, population
                r = r + t : init = -1
            """)

        neuron2 = Neuron(equations="""
                r = sum(ff)
            """)

        synapse_glob = Synapse(psp="pre.glob_r * w")

        pop1 = Population((3), input_neuron)
        pop2 = Population((3), neuron2)

        # A projection with uniform delay
        proj = Projection(pre=pop1, post=pop2, target="ff")
        proj.connect_one_to_one(weights=1.0, delays=10.0)

        # A projection with uniform delay
        proj2 = Projection(pre=pop1,
                           post=pop2,
                           target="ff_glob",
                           synapse=synapse_glob)
        proj2.connect_one_to_one(weights=1.0, delays=10.0)

        # Build up network
        cls.test_net = Network()
        cls.test_net.add([pop1, pop2, proj, proj2])
        cls.test_net.compile(silent=True)

        # Store references for easier usage in test cases
        cls.net_proj = cls.test_net.get(proj)
        cls.net_proj2 = cls.test_net.get(proj2)
        cls.net_pop1 = cls.test_net.get(pop1)
        cls.net_pop2 = cls.test_net.get(pop2)
    def setUpClass(cls):
        """
        Compile the network for this test
        """
        neuron = Neuron(parameters="r=0.0")

        out1 = Neuron(equations="""
                r =  sum(one2one)
            """)

        out2 = Neuron(equations="""
                r =  sum(all2all) + sum(fnp)
            """)

        pop1 = Population((17, 17), neuron)
        pop2 = Population((17, 17), out1)
        pop3 = Population(4, out2)

        proj = Projection(pre=pop1, post=pop2, target="one2one")
        proj.connect_one_to_one(
            weights=0.0,
            force_multiple_weights=True)  # weights set in the test

        proj2 = Projection(pre=pop1, post=pop3, target="all2all")
        proj2.connect_all_to_all(weights=Uniform(0, 1))

        proj3 = Projection(pre=pop1, post=pop3, target="fnp")
        proj3.connect_fixed_number_pre(5, weights=Uniform(0, 1))

        cls.test_net = Network()
        cls.test_net.add([pop1, pop2, pop3, proj, proj2, proj3])
        cls.test_net.compile(silent=True)

        cls.net_pop1 = cls.test_net.get(pop1)
        cls.net_pop2 = cls.test_net.get(pop2)
        cls.net_pop3 = cls.test_net.get(pop3)
        cls.net_proj = cls.test_net.get(proj)
        cls.net_proj2 = cls.test_net.get(proj2)
        cls.net_proj3 = cls.test_net.get(proj3)
Exemple #6
0
                     target='exc',
                     synapse=DAPostCovarianceNoThreshold)
ITStrD2.connect_all_to_all(weights=Uniform(0, 0.3))  #Normal(0.15,0.15))
ITStrD2.DA_type = -1

ITSTN = Projection(pre=IT,
                   post=STN,
                   target='exc',
                   synapse=DAPostCovarianceNoThreshold)
ITSTN.connect_all_to_all(weights=Uniform(0, 0.3))  #Normal(0.15,0.15))
ITSTN.DA_type = 1

###############  OUTPUT  ########################

SNrMD = Projection(pre=SNr, post=MD, target='inh', synapse=StandardSynapse)
SNrMD.connect_one_to_one(weights=changed['SNrMD.connect_one_to_one'])

################ REWARD  #######################

PPTNSNc = Projection(pre=PPTN, post=SNc, target='exc', synapse=StandardSynapse)
PPTNSNc.connect_all_to_all(weights=1.0)

StrD1SNc = Projection(pre=StrD1, post=SNc, target='inh', synapse=DAPrediction)
StrD1SNc.connect_all_to_all(weights=0.5)  #statt 1.0

SNcStrD1 = Projection(pre=SNc,
                      post=StrD1,
                      target='dopa',
                      synapse=StandardSynapse)
SNcStrD1.connect_all_to_all(weights=1.0)
Exemple #7
0
def grid_search_annarchy(param_grid: dict, param_map: dict, dt: float, simulation_time: float,
                         inputs: dict, outputs: dict, sampling_step_size: Optional[float] = None,
                         permute_grid: bool = False, circuit=None, **kwargs) -> DataFrame:
    """Function that runs multiple parametrizations of the same circuit in parallel and returns a combined output.

    Parameters
    ----------
    param_grid
        Key-value pairs for each circuit parameter that should be altered over different circuit parametrizations.
    param_map
        Key-value pairs that map the keys of param_grid to concrete circuit variables.
    dt
        Simulation step-size in s.
    simulation_time
        Simulation time in s.
    inputs
        Inputs as provided to the `run` method of `:class:ComputeGraph`.
    outputs
        Outputs as provided to the `run` method of `:class:ComputeGraph`.
    sampling_step_size
        Sampling step-size as provided to the `run` method of `:class:ComputeGraph`.
    permute_grid
        If true, all combinations of the provided param_grid values will be realized. If false, the param_grid values
        will be traversed pairwise.
    circuit
        Instance of ANNarchy network.
    kwargs
        Additional keyword arguments passed to the `:class:ComputeGraph` initialization.



    Returns
    -------
    DataFrame
        Simulation results stored in a multi-index data frame where each index lvl refers to one of the parameters of
        param_grid.

    """

    from ANNarchy import Population, Projection, Network, TimedArray, Monitor, ANNarchyException

    # linearize parameter grid if necessary
    if type(param_grid) is dict:
        param_grid = linearize_grid(param_grid, permute_grid)

    # create annarchy net if necessary
    if circuit is None:
        circuit = Network(everything=True)

    # assign parameter updates to each circuit and combine them to unconnected network
    circuit_names = []
    param_info = []
    param_split = "__"
    val_split = "--"
    comb = "_"
    populations, projections = {}, {}
    for n in range(param_grid.shape[0]):

        # copy and re-parametrize populations
        try:
            for p in circuit.get_populations():
                name = f'net{n}/{p.name}'
                p_new = Population(geometry=p.geometry, neuron=p.neuron_type, name=name,
                                   stop_condition=p.stop_condition, storage_order=p._storage_order,
                                   copied=False)
                p_new = adapt_pop(p_new, param_grid.iloc[n, :], param_map)
                populations[name] = p_new

                # add input to population
                for node, inp in inputs.items():
                    if node in name:
                        inp_name = f'{name}_inp'
                        inp = TimedArray(rates=inp, name=inp_name)
                        proj = Projection(pre=inp, post=p_new, target='exc')
                        proj.connect_one_to_one(1.0)
                        populations[inp_name] = inp
                        projections[inp_name] = proj
        except ANNarchyException:
            pass

        # copy and re-parametrize projections
        try:
            for c in circuit.get_projections():
                source = c.pre if type(c.pre) is str else c.pre.name
                target = c.post if type(c.post) is str else c.post.name
                source = f'net{n}/{source}'
                target = f'net{n}/{target}'
                name = f'{source}/{target}/{c.name}'
                c_new = Projection(pre=source, post=target, target=c.target, synapse=c.synapse_type, name=name,
                                   copied=False)
                c_new._store_connectivity(c._connection_method, c._connection_args, c._connection_delay, c._storage_format)
                c_new = adapt_proj(c_new, param_grid.iloc[n, :], param_map)
                projections[name] = c_new
        except ANNarchyException:
            pass

        # collect parameter and circuit name infos
        circuit_names.append(f'net{n}')
        param_names = list(param_grid.columns.values)
        param_info_tmp = [f"{param_names[i]}{val_split}{val}" for i, val in enumerate(param_grid.iloc[n, :])]
        param_info.append(param_split.join(param_info_tmp))

    net = Network()
    for p in populations.values():
        net.add(p)
    for c in projections.values():
        net.add(c)

    # adjust output of simulation to combined network
    nodes = [p.name for p in circuit.get_populations()]
    out_names, var_names, out_lens, monitors, monitor_names = [], [], [], [], []
    for out_key, out in outputs.copy().items():
        out_names_tmp, out_lens_tmp = [], []
        if out[0] in nodes:
            for i, name in enumerate(param_info):
                out_tmp = list(out)
                out_tmp[0] = f'{circuit_names[i]}/{out_tmp[0]}'
                p = net.get_population(out_tmp[0])
                monitors.append(Monitor(p, variables=out_tmp[-1], period=sampling_step_size, start=True,
                                        net_id=net.id))
                monitor_names.append(f'{name}{param_split}out_var{val_split}{out_key}{comb}{out[0]}')
                var_names.append(out_tmp[-1])
                out_names_tmp.append(f'{out_key}{comb}{out[0]}')
                out_lens_tmp.append(p.geometry[0])
        elif out[0] == 'all':
            for node in nodes:
                for i, name in enumerate(param_info):
                    out_tmp = list(out)
                    out_tmp[0] = f'{circuit_names[i]}/{node}'
                    p = net.get_population(out_tmp[0])
                    monitors.append(Monitor(p, variables=out_tmp[-1], period=sampling_step_size, start=True,
                                            net_id=net.id))
                    monitor_names.append(f'{name}{param_split}out_var{val_split}{out_key}{comb}{node}')
                    var_names.append(out_tmp[-1])
                    out_names_tmp.append(f'{out_key}{comb}{node}')
                    out_lens_tmp.append(p.geometry[0])
        else:
            node_found = False
            for node in nodes:
                if out[0] in node:
                    node_found = True
                    for i, name in enumerate(param_info):
                        out_tmp = list(out)
                        out_tmp[0] = f'{circuit_names[i]}/{node}'
                        p = net.get_population(out_tmp[0])
                        monitors.append(Monitor(p, variables=out_tmp[-1], period=sampling_step_size, start=True,
                                                net_id=net.id))
                        monitor_names.append(f'{name}{param_split}out_var{val_split}{out_key}{comb}{node}')
                        var_names.append(out_tmp[-1])
                        out_names_tmp.append(f'{out_key}{comb}{node}')
                        out_lens_tmp.append(p.geometry[0])
            if not node_found:
                raise ValueError(f'Invalid output identifier in output: {out_key}. '
                                 f'Node {out[0]} is not part of this network')
        out_names += list(set(out_names_tmp))
        out_lens += list(set(out_lens_tmp))
    #net.add(monitors)

    # simulate the circuits behavior
    net.compile()
    net.simulate(duration=simulation_time)

    # transform output into pyrates-compatible data format
    results = pyrates_from_annarchy(monitors, vars=list(set(var_names)),
                                    monitor_names=monitor_names, **kwargs)

    # transform results into long-form dataframe with changed parameters as columns
    multi_idx = [param_grid[key].values for key in param_grid.keys()]
    n_iters = len(multi_idx[0])
    outs = []
    for out_name, out_len in zip(out_names, out_lens):
        outs += [f'{out_name}_n{i}' for i in range(out_len)] * n_iters
    multi_idx_final = []
    for idx in multi_idx:
        for val in idx:
            for out_len in out_lens:
                multi_idx_final += [val]*len(out_names)*out_len
    index = MultiIndex.from_arrays([multi_idx_final, outs], names=list(param_grid.keys()) + ["out_var"])
    index = MultiIndex.from_tuples(list(set(index)), names=list(param_grid.keys()) + ["out_var"])
    results_final = DataFrame(columns=index, data=np.zeros_like(results.values), index=results.index)
    for col in results.keys():
        params = col.split(param_split)
        indices = [None] * len(results_final.columns.names)
        for param in params:
            var, val = param.split(val_split)[:2]
            idx = list(results_final.columns.names).index(var)
            try:
                indices[idx] = float(val)
            except ValueError:
                indices[idx] = val
        results_final.loc[:, tuple(indices)] = results[col].values

    return results_final