Exemple #1
0
def testLogReg(model, data, activation = sigmoid().h):
	''' testing Linear regression'''

	h = predictLogReg(model, data.X, activation)
	print 'Testing the hypothesis', list(np.transpose(model).flat)
	print 'y\t->\tp'
	for i in range(data.m):
		print('%d -> %d')%(int(data.y[i]), int(h[i]))
	cost, _ = logRegCost(data, model, 0.0, activation)
	print 'total cost is :', cost
Exemple #2
0
def logRegCost(data, theta, regLambda, activation = sigmoid().h):
	''' returns the cost and gradient terms of Linear Regression'''

	theta = np.matrix(theta)
	h = activation(np.transpose(data.X) * theta)
	theta2 = np.vstack(([[0]],theta[1:]))
	J = -1.0 / data.m * (np.transpose(data.y)* np.log(h)  + \
			(1 - np.transpose(data.y)) * np.log(1 - h)) + \
			0.5 * regLambda / data.m * np.transpose(theta2) * theta2
	grad = 1.0 / data.m * (data.X * (h - data.y)) + \
			(regLambda / data.m * theta2)
	return float(J[0][0]), grad
Exemple #3
0
def trainOneVsAllGD(data, act = sigmoid().h, epochs = 10000, lr = 0.5):
	data.addBiasRow()
	theta_init = np.matrix(np.zeros((data.n, 1)))
	from functools import partial
	from copy import deepcopy
	model= np.matrix(np.zeros((data.n, data.K)))
	J = np.matrix(np.zeros((data.K, epochs)))
	
	for k in range(data.K):
		d2 = deepcopy(data)
		d2.y = (data.y == k)
		cost = partial(logRegCost,data = d2,theta = theta_init, \
				regLambda = 0.001, activation = act)
		J[k, :], model[:, k] = gradDesc(cost, theta_init, epochs, lr)
	return model, J
Exemple #4
0
	def __init__(self, arch, activation = sigmoid()):

		# define activation and derivative of activation functions
		self.h, self.dh = activation.h, activation.dh

		# Architecture, i.e. number of units/neurons in each layer
		self.arch = arch   
		# Number of Layers in the Network
		self.L = len(arch)
		# List of Weight Matrices, initialize each with small random numbers
		Wt = []
		for l in range(1, self.L):
			#Wl = np.matrix([[gauss(0, math.sqrt(6.0 / (arch[l] * arch[l - 1]))) \
			#	for i in xrange(arch[l])] for j in range(arch[l - 1] + 1)])
			epsilon = math.sqrt(6.0 / (arch[l] * arch[l - 1]))
			Wl = np.random.random((arch[l - 1] + 1, arch[l])) - 0.5
			Wt.append(epsilon * Wl)

		self.W = self.unrollWt(Wt)
Exemple #5
0
def linear_activation_forward(A_prev, W, b, activation, annealing):
    """
    A_prev -- activations from previous layer or input data -- (size of previous layer, number of examples)
    W -- weights matrix -- (size of l, size of l-1)
    b -- bias vector -- (size of l, 1)
    activation -- the activation to be used in this layer, either "sigmoid" or "relu"
    A -- the output of the activation function
    cache -- a tuple containing "linear_cache" and "activation_cache" for backprop
    """

    if activation == AcvtivationFunc.sigmoid:
        Z, linear_cache = linear_forward(A_prev, W, b)
        A, activation_cache = sigmoid(Z, annealing)

    elif activation == AcvtivationFunc.relu:
        Z, linear_cache = linear_forward(A_prev, W, b)
        A, activation_cache = relu(Z)

    assert (A.shape == (W.shape[0], A_prev.shape[1]))
    cache = (linear_cache, activation_cache)

    return A, cache
Exemple #6
0
def predictMultiple(model, X, act = sigmoid().h):
	return np.argmax(act(np.transpose(X) * model), axis = 1)
Exemple #7
0
def predictLogReg(model, X, activation = sigmoid().h):
	return activation(np.transpose(X) * model) > 0.5
Exemple #8
0
    [[1, 1, 0], [3]],
    [[1, 1, 1], [2]],
]

pat1 = [
    [[0, 0, 0], [0]],
    [[0, 0, 1], [1]],
    [[0, 1, 0], [1]],
    [[0, 1, 1], [0]],
    [[1, 0, 0], [1]],
    [[1, 0, 1], [0]],
    [[1, 1, 0], [0]],
    [[1, 1, 1], [1]],
]

ActSig = sigmoid(4)
# ActSig.view()

d1 = Data()
d1.loadList(pat1)
d2 = Data()
d2.loadList(pat2, 4)

n2 = ANN([3, 3, 4], ActSig)
# n2.displaySynpWt()

arch1 = [3, 4, 1]
n1 = ANN(arch1, ActSig)
# n1.displaySynpWt()

##########################################################
Exemple #9
0
# and function of 3 variables
pat1 = [[[0, 0, 0], [0]],
	[[0, 0, 1], [1]],
	[[0, 1, 0], [1]],
	[[0, 1, 1], [1]],
	[[1, 0, 0], [2]],
	[[1, 0, 1], [3]],
	[[1, 1, 0], [3]],
	[[1, 1, 1], [3]],
	]

d1 = Data()
d1.loadList(pat1, numClasses = 4)
#print d1.y
act = sigmoid().h # our activation function is simgmoid
model, J = trainOneVsAllGD(d1, act,epochs = 5000, lr = 0.25)
#print d1.y
plt.plot(np.transpose(J))
plt.show()

print predictMultiple(model, d1.X, act)
	


# d1.addBiasRow()
# theta_init = np.matrix(np.zeros((d1.n, 1)))

# 
# cost = partial(logRegCost,data = d1,theta = theta_init, \
# 			regLambda = 0.001, activation = act)