Exemple #1
0
def train_Amazon():
    num_walks = 5
    walk_length = 5
    window_size = 5
    neighbor_samples = 5
    n_hidden = 200
    n_layers = 3
    activation = F.relu
    dropout = 0.5
    weight_decay = 0.001
    lr = 0.01
    epochs = 1

    g, features, train_pairs, neg_neighbors, word2index, index2word = load_amazon(num_walks, walk_length, window_size,
                                                                                  neighbor_samples)
    neg_features = []
    for index, neighbors in enumerate(neg_neighbors):
        neg_features.append([features[neighbor] for neighbor in neighbors])

    features = torch.FloatTensor(features)
    neg_features = torch.FloatTensor(neg_features)
    print(features.shape)
    print(neg_features.shape)

    device = torch.device("cpu")
    model = UN_GCN(g=g,
                   in_feats=features.shape[1],
                   n_hidden=n_hidden,
                   n_layers=n_layers,
                   activation=activation,
                   dropout=dropout
                   )
    optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=weight_decay)

    model = model.to(device)
    for epoch in range(epochs):
        model.train()
        h = model(features)
        loss = nce_loss(h, train_pairs, neg_neighbors)
        print(loss)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

    h = model(features)
    embeddings = get_embeddings(h, list(word2index))
    evaluate_amazon(embeddings)
Exemple #2
0
def train_amazon():
    num_walks = 5
    walk_length = 5
    window_size = 5
    neighbor_samples = 5
    hidden_uints = 32
    num_heads = [8]
    dropout = 0.5
    out_size = 200
    lr = 0.1
    weight_decay = 0.001
    epochs = 5

    g, features, train_pairs, neg_neighbors, vocab, edge_data_by_type = load_amazon(
        num_walks, neighbor_samples, window_size)
    features = torch.FloatTensor(features)
    print("特征的shape是:", features.shape)

    metapaths = []
    for edge_type in edge_data_by_type.keys():
        metapaths.append([edge_type] * walk_length)
    model = HAN(meta_paths=metapaths,
                in_size=features.shape[1],
                hidden_size=hidden_uints,
                out_size=out_size,
                num_heads=num_heads,
                dropout=dropout)
    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=lr,
                                 weight_decay=weight_decay)

    for epoch in range(epochs):
        model.train()
        _, h = model(g, features)
        loss = nce_loss(h, train_pairs, neg_neighbors)
        print(loss)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

    _, h = model(g, features)
    embeddings = get_embeddings(h, list(vocab))
    evaluate_amazon(embeddings)
Exemple #3
0
def train_amazon():
    num_walks = 5
    walk_length = 5
    window_size = 5
    neighbor_samples = 5
    weight_decay = 0.001
    lr = 0.01
    epochs = 1
    hidden_dim = 16
    out_dim = 200
    num_heads = 8

    g, features, train_pairs, neg_neighbors, word2index, index2word = load_amazon(
        num_walks, walk_length, window_size, neighbor_samples)
    features = torch.FloatTensor(features)

    model = UN_GAT(g,
                   in_dim=features.shape[1],
                   hidden_dim=hidden_dim,
                   out_dim=out_dim,
                   num_heads=num_heads)

    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=lr,
                                 weight_decay=weight_decay)

    device = torch.device("cpu")
    model = model.to(device)
    for epoch in range(epochs):
        model.train()
        h = model(features)
        loss = nce_loss(h, train_pairs, neg_neighbors)
        print(loss)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

    h = model(features)
    embeddings = get_embeddings(h, list(word2index))
    evaluate_amazon(embeddings)
from metapath2vec_model import Metapath2vec
from metapath2vec_utils import load_dataset

from Linear_evaluation import evaluate_DBLP
from Amazon_evaluation import evaluate_amazon

if __name__ == "__main__":

    dataset = 'Amazon'

    if dataset == 'DBLP':
        metapaths = [['ap', 'pa'] * 3, ['ap', 'pc', 'cp', 'pa'] * 2]
        num_walk = 10
        graph, sentences, node_list = load_dataset(dataset, num_walk,
                                                   metapaths)
        model = Metapath2vec(sentences, graph)
        model.train()
        embeddings = model.get_embeddings(node_list)
        evaluate_DBLP(embeddings)
    if dataset == 'Amazon':
        num_walk = 10
        graph, sentences, index2word = load_dataset(dataset, num_walk)
        model = Metapath2vec(sentences, graph)
        model.train()
        embeddings = model.get_embeddings(index2word)
        evaluate_amazon(embeddings)