def initCache(self, cacheDir="systematics"):
        logger.info("Initializing cache for %s in directory %s"%(self.name, cacheDir))
        if cacheDir:
            self.cacheDir = os.path.join(cache_directory, cacheDir)
            try:    os.makedirs(cacheDir)
            except: pass

            cacheDirName       = os.path.join(cacheDir, self.name)

            self.cache = MergingDirDB(cacheDirName)
            if not self.cache:
                raise Exeption("Cache not initiated!")

            if self.name.count("DD"):
                helperCacheDirName = os.path.join(cacheDir, self.name+"_helper")
                self.helperCache = MergingDirDB(helperCacheDirName)
                if not self.helperCache: raise
                histoHelperCacheDirName = os.path.join(cacheDir, self.name+"_histo")
                self.histoHelperCache = MergingDirDB(histoHelperCacheDirName)
                if not self.histoHelperCache: raise
                tfCacheDirName = os.path.join(cacheDir, self.name+"_tf")
                self.tfCache = MergingDirDB(tfCacheDirName)
                if not self.tfCache: raise
            elif self.name.count("had"):
                helperCacheDirName = os.path.join(cacheDir, "had_helper")
                self.helperCache = MergingDirDB(helperCacheDirName)
                if not self.helperCache: raise
            else:
                self.helperCache=None
                self.tfCache=None

        else:
            self.cache=None
            self.helperCache=None
            self.tfCache=None
Exemple #2
0
    def initCache(self, cacheDir="dataObs"):
        if cacheDir:
            self.cacheDir = os.path.join(cache_directory, cacheDir)
            try:
                os.makedirs(cacheDir)
            except:
                pass

            cacheDirName = os.path.join(cacheDir, self.name)
            self.cache = MergingDirDB(cacheDirName)
            if not self.cache: raise

        else:
            self.cache = None
Exemple #3
0

# Text on the plots
def drawObjects(lumi_scale):
    tex = ROOT.TLatex()
    tex.SetNDC()
    tex.SetTextSize(0.04)
    tex.SetTextAlign(11)  # align right
    line = (0.68, 0.95, "%3.1f fb^{-1} (13 TeV)" % lumi_scale)
    lines = [(0.15, 0.95, "CMS #bf{#it{Preliminary}}"), line]
    return [tex.DrawLatex(*l) for l in lines]


cache_dir = os.path.join(cache_directory, "drawHistos", str(args.year),
                         args.selection, args.mode)
dirDB = MergingDirDB(cache_dir)
if not dirDB: raise

# Sample definition
os.environ["gammaSkim"] = "True"  #always false for QCD estimate
if args.year == 2016:
    from TTGammaEFT.Samples.nanoTuples_Summer16_private_semilep_postProcessed import *
    from TTGammaEFT.Samples.nanoTuples_Run2016_14Dec2018_semilep_postProcessed import *
    mc = all_noQCD  #all_mc
    data_sample = Run2016
elif args.year == 2017:
    from TTGammaEFT.Samples.nanoTuples_Fall17_private_semilep_postProcessed import *
    from TTGammaEFT.Samples.nanoTuples_Run2017_14Dec2018_semilep_postProcessed import *
    mc = all_noQCD  #all_mc
    data_sample = Run2017
elif args.year == 2018:
# Text on the plots
def drawObjects( lumi_scale ):
    tex = ROOT.TLatex()
    tex.SetNDC()
    tex.SetTextSize(0.04)
    tex.SetTextAlign(11) # align right
    line = (0.68, 0.95, "%3.1f fb^{-1} (13 TeV)" % lumi_scale)
    lines = [
      (0.15, 0.95, "CMS #bf{#it{Preliminary}}"),
      line
    ]
    return [tex.DrawLatex(*l) for l in lines]

cache_dir = os.path.join(cache_directory, "drawHistos", "all", args.selection, args.mode)
dirDB = MergingDirDB(cache_dir)
if not dirDB: raise

# Sample definition
os.environ["gammaSkim"]="False" #always false for QCD estimat
from TTGammaEFT.Samples.nanoTuples_Run2016_14Dec2018_semilep_postProcessed import *
data2016 = Run2016
from TTGammaEFT.Samples.nanoTuples_Run2017_14Dec2018_semilep_postProcessed import *
data2017 = Run2017
from TTGammaEFT.Samples.nanoTuples_Run2018_14Dec2018_semilep_postProcessed import *
data2018 = Run2018

lumi_scale   = (data2016.lumi + data2017.lumi + data2018.lumi) * 0.001

filterCutData = getFilterCut( 2016, isData=True,  skipBadChargedCandidate=True )
data2016.setSelectionString( [filterCutData, "reweightHEM>0", cutInterpreter.cutString( args.mode )] )
Exemple #5
0
if args.binning[0] > 1:
    xRange = np.linspace( args.binning[1], args.binning[2], int(args.binning[0]), endpoint=False)
else:
    xRange = [ 0.5 * ( args.binning[2] - args.binning[1] ) ]

# Samples
from TTXPheno.samples.hepmc_samples_11_06  import *
hepSample = ttbarZ if args.sample == "ttZ" else ttbar
hepSample.root_samples_dict = { name:sample for name, sample in hepSample.root_samples_dict.iteritems() if name.startswith(args.pdf+"_") or name == "PP"}

baseDir       = os.path.join( cache_directory, "hepmc", "limits" )
if not os.path.exists( baseDir ): os.makedirs( baseDir )

cacheFileName   = os.path.join( baseDir, "calculatedLimits" )
limitCache      = MergingDirDB( cacheFileName )

sample_directory = hepSample.name
if args.small:     sample_directory += "_small"

addon = []
#save data file
filename = '_'.join( ['hepMCnll', args.sample ] + map( str, args.binning ) + [ args.selection ] + addon ) + '.data'

def getHiggsWeight( c ):
    sigmaC  = (1-c)**2*hepSample.samples_dict['PP'].xSection + \
              (1-c)*c*hepSample.samples_dict[args.pdf+'_GH'].xSection + \
              (1-c)*c*hepSample.samples_dict[args.pdf+'_HG'].xSection + \
              c**2*hepSample.samples_dict[args.pdf+'_HH'].xSection

    return sigmaC
Exemple #6
0
from TTGammaEFT.Samples.genTuples_TTGamma_EFT_postProcessed import *
eftSample = eval(args.sample)

#settings for eft reweighting
w = WeightInfo(eftSample.reweight_pkl)
w.set_order(args.order)
variables = w.variables


def get_weight_string(parameters):
    return w.get_weight_string(**parameters)


baseDir = os.path.join(cache_directory, "analysis", "eft")
cacheFileName = os.path.join(baseDir, eftSample.name)
cache = MergingDirDB(cacheFileName)

parameters = allRegions[args.controlRegion]["parameters"]
channels = allRegions[args.controlRegion]["channels"]
photonSelection = not allRegions[args.controlRegion]["noPhotonCR"]
allPhotonRegions = allRegions[args.controlRegion]["inclRegion"] + allRegions[
    args.controlRegion]["regions"] if photonSelection else allRegions[
        args.controlRegion]["regions"]
setup = Setup(year=2016, checkOnly=args.checkOnly)
setup = setup.sysClone(parameters=parameters)


def wrapper(arg):
    r, channel, setup, (ctZ, ctZI, ctW, ctWI) = arg
    EFTparams = ["ctZ", str(ctZ), "ctZI",
                 str(ctZI)]  #, "ctW", str(ctW), "ctWI", str(ctWI) ]
Exemple #7
0
selection = signalRegions[args.recoSelection]["lambda"]
setup = Setup(
    year=args.year, photonSelection=False, checkOnly=True,
    runOnLxPlus=False)  #photonselection always false for qcd estimate
setup = setup.sysClone(parameters=allRegions[args.recoSelection]["parameters"])
recoselection = setup.selection("MC",
                                channel="all",
                                **setup.defaultParameters())
recoSelection = recoselection["prefix"]

nGen, xminGen, xmaxGen = args.genBinning
nReco, xminReco, xmaxReco = args.recoBinning

cache_dir = os.path.join(cache_directory, "unfolding", str(args.year),
                         "matrix")
dirDB = MergingDirDB(cache_dir)

if args.year == 2016: lumi_scale = 35.92
elif args.year == 2017: lumi_scale = 41.53
elif args.year == 2018: lumi_scale = 59.74
elif args.year == "RunII": lumi_scale = 35.92 + 41.53 + 59.74

if args.normalize:
    lumi_scale = 1.

plot_directory_ = os.path.join(plot_directory, "unfolding", str(args.year),
                               args.plot_directory, args.genSelection,
                               args.recoSelection, args.mode)

reconstructionBinning = [50, 0.6, 2]
dresMatrix = {
Exemple #8
0
def plotRegions(sorted=True):
    # get region histograms
    if args.year == "combined":
        hists_tmp = Results.getRegionHistos(postFit=args.postFit,
                                            plotBins=plotBins,
                                            nuisances=plotNuisances,
                                            addStatOnlyHistos=True,
                                            bkgSubstracted=args.bkgSubstracted,
                                            labelFormater=labelFormater)
        for i, dir in enumerate(Results.channels):
            if i == 0:
                hists = {
                    key: hist.Clone(str(i) + dir + key)
                    for key, hist in hists_tmp[dir].iteritems()
                    if not args.plotNuisances or key not in plotNuisances
                }  #copy.deepcopy(hists_tmp)
                if args.plotNuisances:
                    for n in plotNuisances:
                        hists.update({
                            n: {
                                "up":
                                hists_tmp[dir][n]["up"].Clone(
                                    str(i) + dir + n + "up"),
                                "down":
                                copy.deepcopy(hists_tmp[dir][n]["down"].Clone(
                                    str(i) + dir + n + "down"))
                            }
                        })
                        hists[n]["up"].legendText = hists_tmp[dir][n][
                            "up"].legendText
                        hists[n]["up"].style = hists_tmp[dir][n]["up"].style
                        hists[n]["down"].legendText = hists_tmp[dir][n][
                            "down"].legendText
                        hists[n]["down"].style = hists_tmp[dir][n][
                            "down"].style
            else:
                for key, hist in hists_tmp[dir].iteritems():
                    if args.plotNuisances and key in plotNuisances:
                        hists[key]["up"].Add(
                            hist["up"].Clone(str(i) + dir + key + "up"))
                        hists[key]["down"].Add(
                            hist["down"].Clone(str(i) + dir + key + "down"))
                    else:
                        hists[key].Add(hist.Clone(str(i) + dir + key))

    else:
        hists = Results.getRegionHistos(postFit=args.postFit,
                                        plotBins=plotBins,
                                        nuisances=plotNuisances,
                                        addStatOnlyHistos=True,
                                        bkgSubstracted=args.bkgSubstracted,
                                        labelFormater=labelFormater)["Bin0"]

    if args.plotNuisances and args.plotNuisances[0] == "total":

        hists["totalUnc"] = Results.sumNuisanceHistos(hists,
                                                      addStatUnc=True,
                                                      postFit=args.postFit)
        for i_n, ni in enumerate(plotNuisances):
            del hists[ni]

        error = []
        for i in range(hists["totalUnc"]["up"].GetNbinsX()):
            print i + 1, hists["totalUnc"]["relUp"].GetBinContent(
                i + 1) - hists["total"].GetBinError(i + 1) > 0, abs(
                    hists["totalUnc"]["relUp"].GetBinContent(i + 1) -
                    hists["total"].GetBinError(i + 1)
                ), abs(hists["totalUnc"]["relUp"].GetBinContent(i + 1) -
                       hists["total"].GetBinError(i + 1)
                       ) / hists["total"].GetBinError(i + 1)
            error.append(
                abs(hists["totalUnc"]["relUp"].GetBinContent(i + 1) -
                    hists["total"].GetBinError(i + 1)) /
                hists["total"].GetBinError(i + 1))
        global max
        print "Max difference: %f, Mean difference: %f" % (max(error),
                                                           np.mean(error))

    differential = False
    ch = "all"
    xLabel = ""
    if args.substituteCard: subCard = args.substituteCard.split("_")
    if args.bkgSubstracted and args.substituteCard:
        hists = replaceHistoBinning(hists)
        differential = True
        ch = subCard[-1]

    minMax = 0.29  #0.19 if args.postFit else 0.9
    if args.bkgSubstracted:
        minMax = 0.29  #0.19 if args.postFit else 0.9
        ratioCenter = None
        boxes, ratio_boxes = getErrorBoxes(copy.copy(hists["signal"]),
                                           minMax,
                                           lineColor=ROOT.kOrange - 2,
                                           fillColor=ROOT.kOrange - 2,
                                           hashcode=1001,
                                           ratioCenter=ratioCenter)
        boxes_stat, ratio_boxes_stat = getErrorBoxes(copy.copy(
            hists["signal_stat"]),
                                                     minMax,
                                                     lineColor=ROOT.kAzure - 3,
                                                     fillColor=ROOT.kAzure - 3,
                                                     hashcode=1001,
                                                     ratioCenter=ratioCenter)
    else:
        boxes, ratio_boxes = getUncertaintyBoxes(
            copy.copy(hists["total"]),
            minMax,
            lineColor=ROOT.kGray + 3,
            fillColor=ROOT.kGray + 3,
            hashcode=formatSettings(nBins)["hashcode"])
        if args.postFit:
            boxes_stat, ratio_boxes_stat = getUncertaintyBoxes(
                copy.copy(hists["total_stat"]),
                minMax,
                lineColor=ROOT.kAzure - 3,
                fillColor=ROOT.kAzure - 3,
                hashcode=1001)

    hists["data"].style = styles.errorStyle(ROOT.kBlack)
    hists[
        "data"].legendText = "data" if not args.bkgSubstracted else "bkg-sub. data (#color[61]{stat}, #color[92]{total} error, %s)" % (
            ch.replace("mu", "#mu") if ch != "all" else "e+#mu")
    hists["data"].legendOption = "p" if args.bkgSubstracted else "p"

    if args.bkgSubstracted:
        hists["signal"].style = styles.lineStyle(ROOT.kOrange + 7,
                                                 width=2,
                                                 errors=False)
        hists[
            "signal"].legendText = "tt#gamma SM prediction"  # (detector level)"

    else:
        for h_key, h in hists.iteritems():
            if "total" in h_key or h_key not in processes: continue
            hists[h_key].legendText = default_processes[h_key]["texName"]
            hists[h_key].style = styles.fillStyle(
                default_processes[h_key]["color"], errors=False)
            hists[h_key].LabelsOption("v", "X")

    # some settings and things like e.g. uncertainty boxes
    drawObjects_ = drawObjects(
        nBins=nBins,
        isData=(not args.expected),
        lumi_scale=lumi_scale,
        postFit=args.postFit,
        cardfile=args.substituteCard if args.substituteCard else args.cardfile,
        preliminary=args.preliminary)
    drawObjects_ += boxes
    if args.postFit:
        drawObjects_ += boxes_stat
#    if args.bkgSubstracted: drawObjects_ += boxes_stat
    drawObjects_ += drawDivisions(crLabel,
                                  misIDPOI=("misIDPOI" in args.cardfile))
    drawObjects_ += drawPTDivisions(crLabel, ptLabels)

    histModifications = []
    if not differential:
        histModifications += [
            lambda h: h.GetYaxis().SetTitleSize(
                formatSettings(nBins)["textsize"])
        ]
        histModifications += [
            lambda h: h.GetYaxis().SetLabelSize(
                formatSettings(nBins)["ylabelsize"])
        ]
        histModifications += [
            lambda h: h.GetYaxis().SetTitleOffset(
                formatSettings(nBins)["textoffset"])
        ]
        histModifications += [
            setPTBinLabels(ptLabels,
                           crName,
                           fac=formatSettings(nBins)["offsetfactor"] *
                           hists["total"].GetMaximum())
        ]

    ratioHistModifications = []
    if not differential:
        ratioHistModifications += [
            lambda h: h.GetYaxis().SetTitleSize(
                formatSettings(nBins)["textsize"])
        ]
        ratioHistModifications += [
            lambda h: h.GetYaxis().SetLabelSize(
                formatSettings(nBins)["ylabelsize"])
        ]
        ratioHistModifications += [
            lambda h: h.GetYaxis().SetTitleOffset(
                formatSettings(nBins)["textoffset"])
        ]
        ratioHistModifications += [
            lambda h: h.GetXaxis().SetTitleSize(
                formatSettings(nBins)["textsize"])
        ]
        ratioHistModifications += [
            lambda h: h.GetXaxis().SetLabelSize(
                formatSettings(nBins)["xlabelsize"])
        ]
        ratioHistModifications += [
            lambda h: h.GetXaxis().SetLabelOffset(0.035)
        ]

    addon = []
    if args.bkgSubstracted: addon += ["bkgSub"]
    if args.substituteCard:
        addon += ["rebinned"] + [cr for cr in subCard
                                 ]  #if cr not in args.cardfile.split("_") ]
    if args.plotNuisances: addon += args.plotNuisances

    # plot name
    if args.plotRegions and args.plotChannels:
        plotName = "_".join(
            ["regions"] + addon + args.plotRegions +
            [ch for ch in args.plotChannels if not "tight" in ch])
    elif args.plotRegions:
        plotName = "_".join(["regions"] + addon + args.plotRegions)
    elif args.plotChannels:
        plotName = "_".join(
            ["regions"] + addon +
            [ch for ch in args.plotChannels if not "tight" in ch])
    else:
        plotName = "_".join(["regions"] + addon)

    if args.cacheHistogram:
        from Analysis.Tools.MergingDirDB import MergingDirDB
        from TTGammaEFT.Tools.user import cache_directory
        cache_dir = os.path.join(cache_directory, "unfolding", str(args.year),
                                 "bkgSubstracted",
                                 "expected" if args.expected else "observed")
        dirDB = MergingDirDB(cache_dir)
        if not dirDB: raise
        addon = []
        if args.plotRegions: addon += args.plotRegions
        if args.plotChannels: addon += args.plotChannels
        systematics = [
            sys for sys in Results.getPulls(postFit=True).keys()
            if not "prop" in sys
        ]
        # data histogram
        name = ["bkgSubtracted", args.substituteCard, args.cardfile, "data"]
        print "_".join(name + addon)
        dirDB.add("_".join(name + addon), hists["data"], overwrite=True)
        # bkg substracted total histogram (signal) with total error
        name = ["bkgSubtracted", args.substituteCard, args.cardfile, "signal"]
        print "_".join(name + addon)
        dirDB.add("_".join(name + addon), hists["signal"], overwrite=True)
        # bkg substracted total histogram (signal) with stat error
        name = [
            "bkgSubtracted", args.substituteCard, args.cardfile, "signal_stat"
        ]
        print "_".join(name + addon)
        dirDB.add("_".join(name + addon), hists["signal_stat"], overwrite=True)

    # get histo list
    plots, ratioHistos = Results.getRegionHistoList(
        hists,
        processes=processes,
        noData=False,
        sorted=sorted and not args.bkgSubstracted,
        bkgSubstracted=args.bkgSubstracted,
        directory="dc_2016" if args.year == "combined" else "Bin0")
    if args.plotRegionPlot:

        plotting.draw(
            Plot.fromHisto(
                plotName,
                plots,
                texX="" if not differential else xLabel,
                texY="Observed - Background"
                if args.bkgSubstracted else "Number of Events",
            ),
            logX=False,
            logY=True,
            sorting=False,
            plot_directory=plotDirectory,
            legend=[(0.2, 0.86 if args.bkgSubstracted else
                     formatSettings(nBins)["legylower"], 0.9, 0.9),
                    formatSettings(nBins)["legcolumns"]]
            if not differential else (0.15, 0.80, 0.9, 0.9),
            widths={
                "x_width": formatSettings(nBins)["padwidth"],
                "y_width": formatSettings(nBins)["padheight"],
                "y_ratio_width": formatSettings(nBins)["padratio"]
            } if not differential else {},
            yRange=(0.7, hists["total"].GetMaximum() *
                    formatSettings(nBins)["heightFactor"])
            if not differential else "auto",
            ratio={
                "yRange": (1 - minMax, 1 + minMax),
                "texY": "Data/Pred." if args.bkgSubstracted else "Data/MC",
                "histos": ratioHistos,
                "drawObjects": ratio_boxes +
                ratio_boxes_stat if args.postFit else ratio_boxes,
                "histModifications": ratioHistModifications
            },
            drawObjects=drawObjects_ if not differential else
            drawObjectsDiff(lumi_scale) + boxes + boxes_stat,
            histModifications=histModifications,
            copyIndexPHP=True,
            extensions=["png", "pdf", "root"] if args.bkgSubstracted else
            ["png"],  # pdfs are quite large for sorted histograms (disco plot)
            redrawHistos=args.bkgSubstracted,
        )

    del hists
Exemple #9
0

# Text on the plots
def drawObjects(lumi_scale):
    tex = ROOT.TLatex()
    tex.SetNDC()
    tex.SetTextSize(0.04)
    tex.SetTextAlign(11)  # align right
    line = (0.68, 0.95, "%3.1f fb^{-1} (13 TeV)" % lumi_scale)
    lines = [(0.15, 0.95, "CMS #bf{#it{Preliminary}}"), line]
    return [tex.DrawLatex(*l) for l in lines]


cache_dir = os.path.join(cache_directory, "drawHistos", str(args.year),
                         args.selection, args.mode)
dirDB = MergingDirDB(cache_dir)
if not dirDB: raise

# Sample definition
os.environ["gammaSkim"] = "True"
if args.year == 2016:
    import TTGammaEFT.Samples.nanoTuples_Summer16_private_semilep_postProcessed as mc_samples
    from TTGammaEFT.Samples.nanoTuples_Run2016_14Dec2018_semilep_postProcessed import Run2016 as data_sample
elif args.year == 2017:
    import TTGammaEFT.Samples.nanoTuples_Fall17_private_semilep_postProcessed as mc_samples
    from TTGammaEFT.Samples.nanoTuples_Run2017_14Dec2018_semilep_postProcessed import Run2017 as data_sample
elif args.year == 2018:
    import TTGammaEFT.Samples.nanoTuples_Autumn18_private_semilep_postProcessed as mc_samples
    from TTGammaEFT.Samples.nanoTuples_Run2018_14Dec2018_semilep_postProcessed import Run2018 as data_sample
elif args.year == "RunII":
    import TTGammaEFT.Samples.nanoTuples_RunII_postProcessed as mc_samples
# Text on the plots
def drawObjects( lumi_scale ):
    tex = ROOT.TLatex()
    tex.SetNDC()
    tex.SetTextSize(0.04)
    tex.SetTextAlign(11) # align right
    line = (0.68, 0.95, "%3.1f fb^{-1} (13 TeV)" % lumi_scale)
    lines = [
      (0.15, 0.95, "CMS #bf{#it{Preliminary}}"),
      line
    ]
    return [tex.DrawLatex(*l) for l in lines]

cache_dir = os.path.join(cache_directory, "drawHistos", "all", args.selection, args.mode)
dirDB = MergingDirDB(cache_dir)
if not dirDB: raise

# Sample definition
os.environ["gammaSkim"]="False" #always false for QCD estimate
from TTGammaEFT.Samples.nanoTuples_Summer16_private_semilep_postProcessed  import *
from TTGammaEFT.Samples.nanoTuples_Run2016_14Dec2018_semilep_postProcessed import *
mc16   = all_noQCD_16
data16 = Run2016
from TTGammaEFT.Samples.nanoTuples_Fall17_private_semilep_postProcessed    import *
from TTGammaEFT.Samples.nanoTuples_Run2017_14Dec2018_semilep_postProcessed import *
mc17   = all_noQCD_17
data17 = Run2017
from TTGammaEFT.Samples.nanoTuples_Autumn18_private_semilep_postProcessed  import *
from TTGammaEFT.Samples.nanoTuples_Run2018_14Dec2018_semilep_postProcessed import *
mc18   = all_noQCD_18
Exemple #11
0
args = argParser.parse_args()

lumi_scale = 136.6

# Samples
from TTXPheno.samples.hepmc_samples_11_06 import *
hepSample = ttbarZ if args.sample == "ttZ" else ttbar
hepSample.root_samples_dict = {
    name: sample
    for name, sample in hepSample.root_samples_dict.iteritems() if "HG" in name
}

baseDir = os.path.join(cache_directory, "hepmc", "limits")
cacheFileName = os.path.join(baseDir, "calculatedLimits")
limitCache = MergingDirDB(cacheFileName)

res = {}
res[68] = {}
res[95] = {}
for i, (pdf, val) in enumerate(hepSample.root_samples_dict.iteritems()):
    pdf = pdf.split("_")[0]
    pdfVal = float(pdf.split("-")[1])
    print pdfVal
    if pdf.endswith("35"): continue
    if pdf.endswith("42"): continue
    if pdf.endswith("45"): continue
    sConfig = "_".join([args.sample, args.selection, pdf])

    if not limitCache.contains(sConfig): continue
Exemple #12
0
#cache_directory = "/scratch-cbe/users/lukas.lechner/TTGammaEFT/cache/"
cache_directory = "/scratch-cbe/users/lukas.lechner/TTGammaEFT/cache_read/"

hists = [
    "SR3pPtUnfold",
    "SR3pAbsEtaUnfold",
    "SR3pdRUnfold",
]

#year            = 2016
year = "combined"
cache_dir = os.path.join(cache_directory, "unfolding", str(year),
                         "bkgSubstracted",
                         "expected" if expected else "observed", "postFit",
                         "noFreeze")
dirDB = MergingDirDB(cache_dir)

if year == "combined": years = [2016, 2017, 2018]
else: years = [year]

for h in hists:
    for y in years:

        if year == "combined":
            data_key = "bkgSubtracted_%s_addDYSF_addPtBinnedUnc_%s_%s_VG3_VG4p_misDY3_misDY4p_addDYSF_addPtBinnedUnc_data_%i" % (
                h, h.replace("3p", "3"), h.replace("3p", "4p"), y)
            signal_key = "bkgSubtracted_%s_addDYSF_addPtBinnedUnc_%s_%s_VG3_VG4p_misDY3_misDY4p_addDYSF_addPtBinnedUnc_signal_%i" % (
                h, h.replace("3p", "3"), h.replace("3p", "4p"), y)
            signal_stat_key = "bkgSubtracted_%s_addDYSF_addPtBinnedUnc_%s_%s_VG3_VG4p_misDY3_misDY4p_addDYSF_addPtBinnedUnc_signal_stat_%i" % (
                h, h.replace("3p", "3"), h.replace("3p", "4p"), y)
        else:
Exemple #13
0
        "abs(PSWeight[%i])*LHEWeight_originalXWGTUP/Generator_weight" % i
        for i in ps_indices
    ]

scale_variations = ["abs(LHEScaleWeight[%i])" % i for i in scale_indices]
PDF_variations = ["abs(LHEPdfWeight[%i])" % i for i in pdf_indices]

variations = PDF_variations + scale_variations + PS_variations + aS_variations

results = {}
scale_systematics = {}

# Results DB for scale and PDF uncertainties
cacheDir = os.path.join(cache_directory, "modelling", str(args.year),
                        "inclusive" if args.notNormalized else "normalized")
PDF_cache = MergingDirDB(os.path.join(cacheDir, "PDF"))
scale_cache = MergingDirDB(os.path.join(cacheDir, "Scale"))
PS_cache = MergingDirDB(os.path.join(cacheDir, "PS"))
ISR_cache = MergingDirDB(os.path.join(cacheDir, "ISR"))
FSR_cache = MergingDirDB(os.path.join(cacheDir, "FSR"))
if not PDF_cache: raise
if not scale_cache: raise
if not PS_cache: raise
if not ISR_cache: raise
if not FSR_cache: raise


def wrapper(arg):
    r, c, s, inclusive = arg
    print r, c, s.sys["reweight"], inclusive
    logger.debug("Calculating estimate for %s in region %s and channel %s" %
# Text on the plots
def drawObjects( lumi_scale ):
    tex = ROOT.TLatex()
    tex.SetNDC()
    tex.SetTextSize(0.04)
    tex.SetTextAlign(11) # align right
    line = (0.68, 0.95, "%3.1f fb^{-1} (13 TeV)" % lumi_scale)
    lines = [
      (0.15, 0.95, "CMS #bf{#it{Preliminary}}"),
      line
    ]
    return [tex.DrawLatex(*l) for l in lines]

cache_dir = os.path.join(cache_directory, "drawHistos", str(args.year), args.selection, args.mode)
dirDB = MergingDirDB(cache_dir)
if not dirDB: raise

# Sample definition
os.environ["gammaSkim"]="False" #always false for QCD estimate
if args.year == 2016:
    from TTGammaEFT.Samples.nanoTuples_Run2016_14Dec2018_semilep_postProcessed import *
    data_sample = Run2016
elif args.year == 2017:
    from TTGammaEFT.Samples.nanoTuples_Run2017_14Dec2018_semilep_postProcessed import *
    data_sample = Run2017
elif args.year == 2018:
    from TTGammaEFT.Samples.nanoTuples_Run2018_14Dec2018_semilep_postProcessed import *
    data_sample = Run2018

lumi_scale   = data_sample.lumi * 0.001
Exemple #15
0

# Text on the plots
def drawObjects(lumi_scale):
    tex = ROOT.TLatex()
    tex.SetNDC()
    tex.SetTextSize(0.04)
    tex.SetTextAlign(11)  # align right
    line = (0.68, 0.95, "%3.1f fb^{-1} (13 TeV)" % lumi_scale)
    lines = [(0.15, 0.95, "CMS #bf{#it{Preliminary}}"), line]
    return [tex.DrawLatex(*l) for l in lines]


cache_dir = os.path.join(cache_directory, "drawHistos", str(args.year),
                         args.selection, args.mode)
dirDB = MergingDirDB(cache_dir)
if not dirDB: raise

# Sample definition
os.environ["gammaSkim"] = "False"  #always false for QCD estimate
if args.year == 2016:
    from TTGammaEFT.Samples.nanoTuples_Run2016_14Dec2018_semilep_postProcessed import *
    data_sample = Run2016
elif args.year == 2017:
    from TTGammaEFT.Samples.nanoTuples_Run2017_14Dec2018_semilep_postProcessed import *
    data_sample = Run2017
elif args.year == 2018:
    from TTGammaEFT.Samples.nanoTuples_Run2018_14Dec2018_semilep_postProcessed import *
    data_sample = Run2018

lumi_scale = data_sample.lumi * 0.001
Exemple #16
0
    line = (0.8, 0.95, "(13 TeV)")
    lines = [(0.15, 0.95, "CMS #bf{#it{Preliminary}}"), line]
    return [tex.DrawLatex(*l) for l in lines]


if args.small: args.plot_directory += "_small"

import TTGammaEFT.unfolding.settings as settings_module
logger.info("Unfolding settings: %s", args.settings)
settings = getattr(settings_module, args.settings)

# database
year_str = "_".join(
    settings.years) + ('_' + args.prefix if args.prefix is not None else '')
cache_dir = os.path.join(cache_directory, "unfolding", year_str, "matrix")
dirDB = MergingDirDB(cache_dir)

# specifics from the arguments
plot_directory_ = os.path.join(plot_directory, "unfolding", args.settings,
                               year_str, args.plot_directory)
cfg_key = (args.small, year_str, args.settings)

read_variables = [
    "weight/F", "year/I", "nPhotonGood/I", "nJetGood/I", "nBTagGood/I",
    "nLeptonTight/I", "nLeptonVetoIsoCorr/I", "nPhotonNoChgIsoNoSieie/I",
    "PhotonGood0_pt/F", "triggered/I", "overlapRemoval/I", "pTStitching/I",
    "GenPhotonATLASUnfold0_pt/F", "GenPhotonCMSUnfold0_pt/F",
    "nGenLeptonATLASUnfold/I", "nGenPhotonATLASUnfold/I",
    "nGenBJetATLASUnfold/I", "nGenJetsATLASUnfold/I", "nGenLeptonCMSUnfold/I",
    "nGenPhotonCMSUnfold/I", "nGenBJetCMSUnfold/I", "nGenJetsCMSUnfold/I",
    "reweightHEM/F", "reweightTrigger/F", "reweightL1Prefire/F",
Exemple #17
0
class DataObservation():
    def __init__(self, name, process, cacheDir=None):
        self.name = name
        self.process = process
        self.initCache(cacheDir)

    def initCache(self, cacheDir="dataObs"):
        if cacheDir:
            self.cacheDir = os.path.join(cache_directory, cacheDir)
            try:
                os.makedirs(cacheDir)
            except:
                pass

            cacheDirName = os.path.join(cacheDir, self.name)
            self.cache = MergingDirDB(cacheDirName)
            if not self.cache: raise

        else:
            self.cache = None

    def uniqueKey(self, region, channel, setup):
        ## this is used in MCBasedEstimate
        if hasattr(setup, "blinding"):
            return str(region), channel, json.dumps(
                setup.sys, sort_keys=True), json.dumps(
                    setup.parameters,
                    sort_keys=True), json.dumps(setup.lumi,
                                                sort_keys=True), setup.blinding
        else:
            return str(region), channel, json.dumps(
                setup.sys, sort_keys=True), json.dumps(
                    setup.parameters,
                    sort_keys=True), json.dumps(setup.lumi, sort_keys=True)

    # alias for cachedObservation to make it easier to call the same function as for the mc"s
    def cachedEstimate(self,
                       region,
                       channel,
                       setup,
                       signalAddon=None,
                       save=True,
                       overwrite=False,
                       checkOnly=False):
        return self.cachedObservation(region,
                                      channel,
                                      setup,
                                      overwrite=overwrite,
                                      checkOnly=checkOnly)

    def cachedObservation(self,
                          region,
                          channel,
                          setup,
                          save=True,
                          overwrite=False,
                          checkOnly=False):
        key = self.uniqueKey(region, channel, setup)
        if (self.cache and self.cache.contains(key)) and not overwrite:
            res = self.cache.get(key)
            logger.debug("Loading cached %s result for %r : %r" %
                         (self.name, key, res))
        elif self.cache and not checkOnly:
            res = self.observation(region, channel, setup, overwrite)
            _res = self.cache.add(key, res, overwrite=True)
            logger.debug("Adding cached %s result for %r" % (self.name, key))
        elif not checkOnly:
            res = self.observation(region, channel, setup, overwrite)
        else:
            res = u_float(-1, 0)
        return res if res >= 0 or checkOnly else u_float(0, 0)

    def writeToCache(self,
                     region,
                     channel,
                     setup,
                     value,
                     signalAddon=None,
                     save=True,
                     overwrite=False,
                     checkOnly=False):
        key = self.uniqueKey(region, channel, setup)
        if (self.cache and self.cache.contains(key)) and not overwrite:
            res = self.cache.get(key)
            if res.val != value.val:
                print "Warning, caches estimate not equal to input value: have %s, got %s" % (
                    res, value)
            logger.debug("Loading cached %s result for %r : %r" %
                         (self.name, key, res))
        elif self.cache and not checkOnly:
            _res = self.cache.add(key, value, overwrite=True)
            res = value
            logger.debug("Adding cached %s result for %r" % (self.name, key))
        else:
            res = u_float(-1, 0)
        return res if res >= 0 or checkOnly else u_float(0, 0)

    def observation(self, region, channel, setup, overwrite):

        if setup.nJet == "3p":
            setup4p = setup.sysClone(parameters={"nJet": (4, -1)})
            setup3 = setup.sysClone(parameters={"nJet": (3, 3)})
            return sum([
                self.cachedEstimate(region, channel, s, overwrite=overwrite)
                for s in [setup3, setup4p]
            ])

        if channel == "all":
            return sum([
                self.cachedEstimate(region, c, setup, overwrite=overwrite)
                for c in lepChannels
            ])

        elif channel == "SFtight":
            return sum([
                self.cachedEstimate(region, c, setup, overwrite=overwrite)
                for c in dilepChannels
            ])

        else:
            preSelection = setup.preselection("Data", channel=channel)
            #            cut = "&&".join([region.cutString(setup.sys['selectionModifier']), preSelection['cut']])
            cut = "&&".join([region.cutString(), preSelection['cut']])

            logger.debug("Using cut %s" % cut)

            weight = preSelection['weightStr']
            if hasattr(setup, "blinding") and setup.blinding:
                weight += "*" + setup.blinding

            return u_float(**self.process.getYieldFromDraw(
                selectionString=cut, weightString=weight))
#    "nLeptonVetoIsoCorr": "nLeptonVetoNoIso",
    "nLeptonTight":       "nLeptonTightInvIso",
    "nMuonTight":         "nMuonTightInvIso",
    "nElectronTight":     "nElectronTightInvIso",
    "mLtight0Gamma":      "mLinvtight0Gamma",
    "nPhotonGood":        "nPhotonGoodInvLepIso",
    "nJetGood":           "nJetGoodInvLepIso",
    "nBTagGood":          "nBTagGoodInvLepIso",
    "mT":                 "mTinv",
    "m3":                 "m3inv",
#    "ht":                 "htinv",
    "LeptonTight0":       "LeptonTightInvIso0",
}

cache_dir = os.path.join(cache_directory, "qcdTFHistos", str(args.year), args.selection, args.mode)
dirDB = MergingDirDB(cache_dir)
if not dirDB: raise

binning = [ 20, 0, 200 ]

# Sample definition
os.environ["gammaSkim"]="False" #always false for QCD estimate
if args.year == 2016:
    import TTGammaEFT.Samples.nanoTuples_Summer16_private_semilep_postProcessed as mc_samples
    from   TTGammaEFT.Samples.nanoTuples_Run2016_14Dec2018_semilep_postProcessed import Run2016 as data_sample
elif args.year == 2017:
    import TTGammaEFT.Samples.nanoTuples_Fall17_private_semilep_postProcessed as mc_samples
    from TTGammaEFT.Samples.nanoTuples_Run2017_14Dec2018_semilep_postProcessed import Run2017 as data_sample
elif args.year == 2018:
    import TTGammaEFT.Samples.nanoTuples_Autumn18_private_semilep_postProcessed as mc_samples
    from TTGammaEFT.Samples.nanoTuples_Run2018_14Dec2018_semilep_postProcessed import Run2018 as data_sample
Exemple #19
0

# Text on the plots
def drawObjects(lumi_scale):
    tex = ROOT.TLatex()
    tex.SetNDC()
    tex.SetTextSize(0.04)
    tex.SetTextAlign(11)  # align right
    line = (0.68, 0.95, "%3.1f fb^{-1} (13 TeV)" % lumi_scale)
    lines = [(0.15, 0.95, "CMS #bf{#it{Preliminary}}"), line]
    return [tex.DrawLatex(*l) for l in lines]


cache_dir = os.path.join(cache_directory, "drawHistos", str(args.year),
                         args.selection, args.mode)
dirDB = MergingDirDB(cache_dir)
if not dirDB: raise

# Sample definition
os.environ["gammaSkim"] = "False"  #always false for QCD estimate
if args.year == 2016:
    import TTGammaEFT.Samples.nanoTuples_Summer16_private_semilep_postProcessed as mc_samples
    from TTGammaEFT.Samples.nanoTuples_Run2016_14Dec2018_semilep_postProcessed import Run2016 as data_sample
elif args.year == 2017:
    import TTGammaEFT.Samples.nanoTuples_Fall17_private_semilep_postProcessed as mc_samples
    from TTGammaEFT.Samples.nanoTuples_Run2017_14Dec2018_semilep_postProcessed import Run2017 as data_sample
elif args.year == 2018:
    import TTGammaEFT.Samples.nanoTuples_Autumn18_private_semilep_postProcessed as mc_samples
    from TTGammaEFT.Samples.nanoTuples_Run2018_14Dec2018_semilep_postProcessed import Run2018 as data_sample
elif args.year == "RunII":
    import TTGammaEFT.Samples.nanoTuples_RunII_postProcessed as mc_samples

# Text on the plots
def drawObjects(lumi_scale):
    tex = ROOT.TLatex()
    tex.SetNDC()
    tex.SetTextSize(0.04)
    tex.SetTextAlign(11)  # align right
    line = (0.68, 0.95, "%3.1f fb^{-1} (13 TeV)" % lumi_scale)
    lines = [(0.15, 0.95, "CMS #bf{#it{Preliminary}}"), line]
    return [tex.DrawLatex(*l) for l in lines]


cache_dir = os.path.join(cache_directory, "drawHistos", str(args.year),
                         args.selection, args.mode)
dirDB = MergingDirDB(cache_dir)
if not dirDB: raise

# Sample definition
os.environ["gammaSkim"] = "False"  #always false for QCD estimate
if args.year == 2016:
    import TTGammaEFT.Samples.nanoTuples_Summer16_private_semilep_postProcessed as mc_samples
elif args.year == 2017:
    import TTGammaEFT.Samples.nanoTuples_Fall17_private_semilep_postProcessed as mc_samples
elif args.year == 2018:
    import TTGammaEFT.Samples.nanoTuples_Autumn18_private_semilep_postProcessed as mc_samples
elif args.year == "RunII":
    import TTGammaEFT.Samples.nanoTuples_RunII_postProcessed as mc_samples

all = mc_samples.all_noQCD
class SystematicEstimator:
    __metaclass__ = abc.ABCMeta

    def __init__(self, name, cacheDir=None):
        logger.info("Initializing Systematic Estimator for %s"%name)
        self.name = name
        self.initCache(cacheDir)
        self.processCut = None

        if   "_gen"    in name: self.processCut = "cat0"   #"photoncat0"
        elif "_misID"  in name: self.processCut = "cat2"   #"photoncat2"
        elif "_had"    in name: self.processCut = "cat134" #"photoncat134"
        elif "_prompt" in name: self.processCut = "cat02"  #"photoncat02"
        elif "_np"     in name: self.processCut = "cat134" #"photoncat134"
        elif "_hp"     in name: self.processCut = "cat1"   #"photoncat1"
        elif "_fake"   in name: self.processCut = "cat3"   #"photoncat3"
        elif "_PU"     in name: self.processCut = "cat4"   #"photoncat4"

    def initCache(self, cacheDir="systematics"):
        logger.info("Initializing cache for %s in directory %s"%(self.name, cacheDir))
        if cacheDir:
            self.cacheDir = os.path.join(cache_directory, cacheDir)
            try:    os.makedirs(cacheDir)
            except: pass

            cacheDirName       = os.path.join(cacheDir, self.name)

            self.cache = MergingDirDB(cacheDirName)
            if not self.cache:
                raise Exeption("Cache not initiated!")

            if self.name.count("DD"):
                helperCacheDirName = os.path.join(cacheDir, self.name+"_helper")
                self.helperCache = MergingDirDB(helperCacheDirName)
                if not self.helperCache: raise
                histoHelperCacheDirName = os.path.join(cacheDir, self.name+"_histo")
                self.histoHelperCache = MergingDirDB(histoHelperCacheDirName)
                if not self.histoHelperCache: raise
                tfCacheDirName = os.path.join(cacheDir, self.name+"_tf")
                self.tfCache = MergingDirDB(tfCacheDirName)
                if not self.tfCache: raise
            elif self.name.count("had"):
                helperCacheDirName = os.path.join(cacheDir, "had_helper")
                self.helperCache = MergingDirDB(helperCacheDirName)
                if not self.helperCache: raise
            else:
                self.helperCache=None
                self.tfCache=None

        else:
            self.cache=None
            self.helperCache=None
            self.tfCache=None

    # For the datadriven subclasses which often need the same getYieldFromDraw we write those yields to a cache
    def yieldFromCache(self, setup, process, c, selectionString, weightString, overwrite=False):
        s = (process, c, selectionString, weightString)
        if self.helperCache and self.helperCache.contains(s) and not overwrite:
            return self.helperCache.get(s)
        else:
            yieldFromDraw = u_float(**setup.processes[process].getYieldFromDraw(selectionString, weightString))
            if self.helperCache: self.helperCache.add(s, yieldFromDraw, overwrite=True)
            return yieldFromDraw

    # For the datadriven subclasses which often need the same mT histos we write those yields to a cache
    def histoFromCache(self, var, binning, setup, process, c, selectionString, weightString, overwrite=False):
        s = (var, "_".join(map(str,binning)), process, c, selectionString, weightString)
        if self.histoHelperCache and self.histoHelperCache.contains(s) and not overwrite:
            return self.histoHelperCache.get(s).Clone(process+c+var)
        else:
            histo = setup.processes[process].get1DHistoFromDraw( var, binning=binning, selectionString=selectionString, weightString=weightString, addOverFlowBin="upper" )
            if self.histoHelperCache: self.histoHelperCache.add(s, histo.Clone(process+c+var), overwrite=True)
            return histo.Clone(process+c+var)

    def uniqueKey(self, region, channel, setup, signalAddon=None, qcdUpdates={}):
        sysForKey = setup.sys.copy()
        sysForKey["reweight"] = "TEMP"
        reweightKey = '["' + '", "'.join(sorted([i for i in setup.sys['reweight']])) + '"]' # little hack to preserve order of list when being dumped into json
        key = region, channel, json.dumps(sysForKey, sort_keys=True).replace('"TEMP"',reweightKey), json.dumps(setup.parameters, sort_keys=True), json.dumps(setup.lumi, sort_keys=True)
        if qcdUpdates:  key += tuple(json.dumps(qcdUpdates, sort_keys=True))
        if signalAddon: key += tuple(signalAddon)
        return key

    def replace(self, i, r):
        try:
          if i.count("reweight"): return i.replace(r[0], r[1])
          else:                   return i
        except:                   return i

    def cachedEstimate(self, region, channel, setup, signalAddon=None, save=True, overwrite=False, checkOnly=False):
        key =  self.uniqueKey(region, channel, setup, signalAddon=signalAddon)
        if (self.cache and self.cache.contains(key)) and not overwrite:
            res = self.cache.get(key)
            logger.debug( "Loading cached %s result for %r : %r"%(self.name, key, res) )
        elif self.cache and not checkOnly:
            logger.debug( "Calculating %s result for %r"%(self.name, key) )
            res = self._estimate( region, channel, setup, signalAddon=signalAddon, overwrite=overwrite )
            _res = self.cache.add( key, res, overwrite=True )
            logger.debug( "Adding cached %s result for %r : %r" %(self.name, key, res) )
        elif not checkOnly:
            res = self._estimate( region, channel, setup, signalAddon=signalAddon, overwrite=overwrite)
        else:
            res = u_float(-1,0)
        return res if res >= 0 or checkOnly else u_float(0,0)

    def writeToCache(self, region, channel, setup, value, signalAddon=None, save=True, overwrite=False, checkOnly=False):
        key =  self.uniqueKey(region, channel, setup, signalAddon=signalAddon)
        if (self.cache and self.cache.contains(key)) and not overwrite:
            res = self.cache.get(key)
#            if res.val != value.val: print "Warning, caches estimate not equal to input value: have %s, got %s"%(res, value)
#            logger.debug( "Loading cached %s result for %r : %r"%(self.name, key, res) )
        elif self.cache and not checkOnly:
            _res = self.cache.add( key, value, overwrite=True )
            res = value
            logger.debug( "Adding cached %s result for %r : %r" %(self.name, key, res) )
        else:
            res = u_float(-1,0)
        return res if res >= 0 or checkOnly else u_float(0,0)

    def cachedTransferFactor(self, channel, setup, qcdUpdates=None, save=True, overwrite=False, checkOnly=False):
        key =  self.uniqueKey("region", channel, setup, qcdUpdates=qcdUpdates)
        if (self.tfCache and self.tfCache.contains(key)) and not overwrite:
            res = self.tfCache.get(key)
            logger.debug( "Loading cached %s result for %r : %r"%(self.name, key, res) )
        elif self.tfCache and not checkOnly:
            logger.debug( "Calculating %s result for %r"%(self.name, key) )
#            res = self._dataDrivenTransferFactor( channel, setup, qcdUpdates=qcdUpdates, overwrite=overwrite )
            res = self._fittedTransferFactor( channel, setup, qcdUpdates=qcdUpdates, overwrite=overwrite )
            _res = self.tfCache.add( key, res, overwrite=True )
            logger.debug( "Adding cached transfer factor for %r : %r" %(key, res) )
        elif not checkOnly:
#            res = self._dataDrivenTransferFactor( channel, setup, qcdUpdates=qcdUpdates, overwrite=overwrite )
            res = self._fittedTransferFactor( channel, setup, qcdUpdates=qcdUpdates, overwrite=overwrite )
        else:
            res = u_float(-1,0)
        return res if res > 0 or checkOnly else u_float(0,0)

    def cachedQCDMCTransferFactor(self, channel, setup, qcdUpdates=None, save=True, overwrite=False, checkOnly=False):
        key =  self.uniqueKey("regionQCDMC", channel, setup, qcdUpdates=qcdUpdates)
        if (self.tfCache and self.tfCache.contains(key)) and not overwrite:
            res = self.tfCache.get(key)
            logger.debug( "Loading cached %s result for %r : %r"%(self.name, key, res) )
        elif self.tfCache and not checkOnly:
            logger.debug( "Calculating %s result for %r"%(self.name, key) )
#            res = self._dataDrivenTransferFactor( channel, setup, qcdUpdates=qcdUpdates, overwrite=overwrite )
            res = self._transferFactor( channel, setup, qcdUpdates=qcdUpdates, overwrite=overwrite )
            _res = self.tfCache.add( key, res, overwrite=True )
            logger.debug( "Adding cached transfer factor for %r : %r" %(key, res) )
        elif not checkOnly:
#            res = self._dataDrivenTransferFactor( channel, setup, qcdUpdates=qcdUpdates, overwrite=overwrite )
            res = self._transferFactor( channel, setup, qcdUpdates=qcdUpdates, overwrite=overwrite )
        else:
            res = u_float(-1,0)
        return res if res > 0 or checkOnly else u_float(0,0)

    def cachedFakeFactor(self, region, channel, setup, overwrite=False, checkOnly=False):
        key =  self.uniqueKey(region, channel, setup)
        if (self.helperCache and self.helperCache.contains(key)) and not overwrite:
            res = self.helperCache.get(key)
            logger.debug( "Loading cached %s result for %r : %r"%(self.name, key, res) )
        elif self.helperCache and not checkOnly:
            logger.debug( "Calculating %s result for %r"%(self.name, key) )
            res = self._dataDrivenFakeCorrectionFactor( region, channel, setup, overwrite=overwrite )
            _res = self.helperCache.add( key, res, overwrite=True )
            logger.debug( "Adding cached transfer factor for %r : %r" %(key, res) )
        elif not checkOnly:
            res = self._dataDrivenFakeCorrectionFactor( region, channel, setup, overwrite=overwrite )
        else:
            res = u_float(-1,0)
        return res if res > 0 or checkOnly else u_float(0,0)

    @abc.abstractmethod
    def _estimate(self, region, channel, setup, signalAddon=None, overwrite=False):
        """Estimate yield in "region" using setup"""
        return

    def _transferFactor(self, channel, setup, overwrite=False):
        """Estimate transfer factor for QCD in "region" using setup"""
        return

    def _dataDrivenTransferFactor(self, channel, setup, qcdUpdates=None, overwrite=False):
        """Estimate transfer factor for QCD in "region" using setup"""
        return

    def _fittedTransferFactor(self, channel, setup, qcdUpdates=None, overwrite=False):
        """Estimate transfer factor for QCD in "region" using setup"""
        return

    def _dataDrivenFakeCorrectionFactor(self, region, channel, setup, overwrite=False):
        """Estimate fake factor for hadronic fakes in "region" using setup"""
        return

    def TransferFactorStatistic(self, region, channel, setup):
        ref  = self.cachedTransferFactor(channel, setup)
        up   = u_float(ref.val + ref.sigma)
        down = u_float(ref.val - ref.sigma)
        return abs(0.5*(up-down)/ref) if ref > 0 else u_float(0,0)

    def TuneSystematic(self, region, channel, setup):
        up   = self.cachedEstimate(region, channel, setup, signalAddon="TuneUp")
        down = self.cachedEstimate(region, channel, setup, signalAddon="TuneDown")
        ref  = self.cachedEstimate(region, channel, setup)
        return abs(0.5*(up-down)/ref) if ref > 0 else u_float(0,0)

    def topPtSystematic(self, region, channel, setup):
        ref  = self.cachedEstimate(region, channel, setup)
        up   = self.cachedEstimate(region, channel, setup.sysClone({"reweight":["reweightTopPt"]}))
        return abs((up-ref)/ref) if ref > 0 else up

    def ErdOnSystematic(self, region, channel, setup):
        ref  = self.cachedEstimate(region, channel, setup)
        up   = self.cachedEstimate(region, channel, setup, signalAddon="erdOn")
        return abs((up-ref)/ref) if ref > 0 else up

    def QCDbasedSystematic(self, region, channel, setup):
        ref  = self.cachedEstimate(region, channel, setup)
        up   = self.cachedEstimate(region, channel, setup, signalAddon="QCDbased")
        return abs((up-ref)/ref) if ref > 0 else up

    def GluonMoveSystematic(self, region, channel, setup):
        ref  = self.cachedEstimate(region, channel, setup)
        up   = self.cachedEstimate(region, channel, setup, signalAddon="GluonMove")
        return abs((up-ref)/ref) if ref > 0 else up

    def PUSystematic(self, region, channel, setup):
        ref  = self.cachedEstimate(region, channel, setup)
        up   = self.cachedEstimate(region, channel, setup.sysClone({"reweight":["reweightPUUp"]}))
        down = self.cachedEstimate(region, channel, setup.sysClone({"reweight":["reweightPUDown"]}))
        return abs(0.5*(up-down)/ref) if ref > 0 else u_float(0,0)

    def EERSystematic(self, region, channel, setup):
        ref  = self.cachedEstimate(region, channel, setup)
        up   = self.cachedEstimate(region, channel, setup.sysClone({"selectionModifier":"eResUp"}))
        down = self.cachedEstimate(region, channel, setup.sysClone({"selectionModifier":"eResDown"}))
        return abs(0.5*(up-down)/ref) if ref > 0 else u_float(0,0)

    def EESSystematic(self, region, channel, setup):
        ref  = self.cachedEstimate(region, channel, setup)
        up   = self.cachedEstimate(region, channel, setup.sysClone({"selectionModifier":"eScaleUp"}))
        down = self.cachedEstimate(region, channel, setup.sysClone({"selectionModifier":"eScaleDown"}))
        return abs(0.5*(up-down)/ref) if ref > 0 else u_float(0,0)

#    def MERSystematic(self, region, channel, setup):
#        ref  = self.cachedEstimate(region, channel, setup)
#        up   = self.cachedEstimate(region, channel, setup.sysClone({"selectionModifier":"muTotalUp"}))
#        down = self.cachedEstimate(region, channel, setup.sysClone({"selectionModifier":"muTotalDown"}))
#        return abs(0.5*(up-down)/ref) if ref > 0 else u_float(0,0)

    def JERSystematic(self, region, channel, setup):
        ref  = self.cachedEstimate(region, channel, setup)
        up   = self.cachedEstimate(region, channel, setup.sysClone({"selectionModifier":"jerUp"}))
        down = self.cachedEstimate(region, channel, setup.sysClone({"selectionModifier":"jerDown"}))
        return abs(0.5*(up-down)/ref) if ref > 0 else u_float(0,0)

    def JECSystematic(self, region, channel, setup, jes="Total"):
        ref  = self.cachedEstimate(region, channel, setup)
        if ref == 0: return u_float(0,0)
        up   = self.cachedEstimate(region, channel, setup.sysClone({"selectionModifier":"jes%sUp"%jes}))
        down = self.cachedEstimate(region, channel, setup.sysClone({"selectionModifier":"jes%sDown"%jes}))
        unc  = abs(0.5*(up-down)/ref)
        if unc.val == 0:
            uncUp    = abs((ref-up)/ref)
            uncDown  = abs((ref-down)/ref)
            unc      = uncUp if uncUp.val >= uncDown.val else uncDown
            if unc.val == 0: return u_float(0,0)
        return unc

    def unclusteredSystematic(self, region, channel, setup):
        ref  = self.cachedEstimate(region, channel, setup)
        up   = self.cachedEstimate(region, channel, setup.sysClone({"selectionModifier":"unclustEnUp"}))
        down = self.cachedEstimate(region, channel, setup.sysClone({"selectionModifier":"unclustEnDown"}))
        return abs(0.5*(up-down)/ref) if ref > 0 else u_float(0,0)

    def L1PrefireSystematic(self, region, channel, setup):
        ref  = self.cachedEstimate(region, channel, setup)
        up   = self.cachedEstimate(region, channel, setup.sysClone({"reweight":["reweightL1PrefireUp"]}))
        down = self.cachedEstimate(region, channel, setup.sysClone({"reweight":["reweightL1PrefireDown"]}))
        return abs(0.5*(up-down)/ref) if ref > 0 else u_float(0,0)
    
    def btaggingSFbSystematic(self, region, channel, setup):
        ref  = self.cachedEstimate(region, channel, setup)
        up   = self.cachedEstimate(region, channel, setup.sysClone({"reweight":["reweightBTag_SF_b_Up"]}))
        down = self.cachedEstimate(region, channel, setup.sysClone({"reweight":["reweightBTag_SF_b_Down"]}))
        return abs(0.5*(up-down)/ref) if ref > 0 else u_float(0,0)

    def btaggingSFlSystematic(self, region, channel, setup):
        ref  = self.cachedEstimate(region, channel, setup)
        up   = self.cachedEstimate(region, channel, setup.sysClone({"reweight":["reweightBTag_SF_l_Up"]}))
        down = self.cachedEstimate(region, channel, setup.sysClone({"reweight":["reweightBTag_SF_l_Down"]}))
        return abs(0.5*(up-down)/ref) if ref > 0 else u_float(0,0)

    def leptonSFSystematic(self, region, channel, setup):
        ref  = self.cachedEstimate(region, channel, setup)
        up   = self.cachedEstimate(region, channel, setup.sysClone({"reweight":["reweightLeptonTightSFUp"]}))
        down = self.cachedEstimate(region, channel, setup.sysClone({"reweight":["reweightLeptonTightSFDown"]}))
        return abs(0.5*(up-down)/ref) if ref > 0 else u_float(0,0)

    def leptonSFStatSystematic(self, region, channel, setup):
        ref  = self.cachedEstimate(region, channel, setup)
        up   = self.cachedEstimate(region, channel, setup.sysClone({"reweight":["reweightLeptonTightSFStatUp"]}))
        down = self.cachedEstimate(region, channel, setup.sysClone({"reweight":["reweightLeptonTightSFStatDown"]}))
        return abs(0.5*(up-down)/ref) if ref > 0 else u_float(0,0)

    def leptonSFSystSystematic(self, region, channel, setup):
        ref  = self.cachedEstimate(region, channel, setup)
        up   = self.cachedEstimate(region, channel, setup.sysClone({"reweight":["reweightLeptonTightSFSystUp"]}))
        down = self.cachedEstimate(region, channel, setup.sysClone({"reweight":["reweightLeptonTightSFSystDown"]}))
        return abs(0.5*(up-down)/ref) if ref > 0 else u_float(0,0)

    def leptonTrackingSFSystematic(self, region, channel, setup):
        ref  = self.cachedEstimate(region, channel, setup)
        up   = self.cachedEstimate(region, channel, setup.sysClone({"reweight":["reweightLeptonTrackingTightSFUp"]}))
        down = self.cachedEstimate(region, channel, setup.sysClone({"reweight":["reweightLeptonTrackingTightSFDown"]}))
        return abs(0.5*(up-down)/ref) if ref > 0 else u_float(0,0)

    def photonSFSystematic(self, region, channel, setup):
        ref  = self.cachedEstimate(region, channel, setup)
        up   = self.cachedEstimate(region, channel, setup.sysClone({"reweight":["reweightPhotonSFUp"]}))
        down = self.cachedEstimate(region, channel, setup.sysClone({"reweight":["reweightPhotonSFDown"]}))
        return abs(0.5*(up-down)/ref) if ref > 0 else u_float(0,0)

    def photonSFAltSigSystematic(self, region, channel, setup):
        ref  = self.cachedEstimate(region, channel, setup)
        up   = self.cachedEstimate(region, channel, setup.sysClone({"reweight":["reweightPhotonSFAltSigUp"]}))
        down = self.cachedEstimate(region, channel, setup.sysClone({"reweight":["reweightPhotonSFAltSigDown"]}))
        return abs(0.5*(up-down)/ref) if ref > 0 else u_float(0,0)

    def photonElectronVetoSFSystematic(self, region, channel, setup):
        ref  = self.cachedEstimate(region, channel, setup)
        up   = self.cachedEstimate(region, channel, setup.sysClone({"reweight":["reweightPhotonElectronVetoSFUp"]}))
        down = self.cachedEstimate(region, channel, setup.sysClone({"reweight":["reweightPhotonElectronVetoSFDown"]}))
        return abs(0.5*(up-down)/ref) if ref > 0 else u_float(0,0)

    def triggerSystematic(self, region, channel, setup):
        ref  = self.cachedEstimate(region, channel, setup)
        up   = self.cachedEstimate(region, channel, setup.sysClone({"reweight":["reweightTriggerUp"]}))
        down = self.cachedEstimate(region, channel, setup.sysClone({"reweight":["reweightTriggerDown"]}))
        return abs(0.5*(up-down)/ref) if ref > 0 else u_float(0,0)

    def getBkgSysJobs(self, region, channel, setup):
        l = [
            (region, channel, setup.sysClone({"reweight":["reweightTopPt"]}), None),

            (region, channel, setup.sysClone({"reweight":["reweightPUUp"]}), None),
            (region, channel, setup.sysClone({"reweight":["reweightPUDown"]}), None),

            (region, channel, setup.sysClone({"selectionModifier":"eScaleUp"}), None),
            (region, channel, setup.sysClone({"selectionModifier":"eScaleDown"}), None),

            (region, channel, setup.sysClone({"selectionModifier":"eResUp"}), None),
            (region, channel, setup.sysClone({"selectionModifier":"eResDown"}), None),

#            (region, channel, setup.sysClone({"selectionModifier":"muTotalUp"}), None),
#            (region, channel, setup.sysClone({"selectionModifier":"muTotalDown"}), None),

            (region, channel, setup.sysClone({"selectionModifier":"jerUp"}), None),
            (region, channel, setup.sysClone({"selectionModifier":"jerDown"}), None),

#            (region, channel, setup.sysClone({"selectionModifier":"jesTotalUp"}), None),
#            (region, channel, setup.sysClone({"selectionModifier":"jesTotalDown"}), None),

#            (region, channel, setup.sysClone({"selectionModifier":"unclustEnUp"}), None),
#            (region, channel, setup.sysClone({"selectionModifier":"unclustEnDown"}), None),

            (region, channel, setup.sysClone({"reweight":["reweightL1PrefireUp"]}), None),
            (region, channel, setup.sysClone({"reweight":["reweightL1PrefireDown"]}), None),

            (region, channel, setup.sysClone({"reweight":["reweightBTag_SF_b_Up"]}), None),
            (region, channel, setup.sysClone({"reweight":["reweightBTag_SF_b_Down"]}), None),
            (region, channel, setup.sysClone({"reweight":["reweightBTag_SF_l_Up"]}), None),
            (region, channel, setup.sysClone({"reweight":["reweightBTag_SF_l_Down"]}), None),

            (region, channel, setup.sysClone({"reweight":["reweightLeptonTrackingTightSFUp"]}), None),
            (region, channel, setup.sysClone({"reweight":["reweightLeptonTrackingTightSFDown"]}), None),

            (region, channel, setup.sysClone({"reweight":["reweightPhotonSFUp"]}), None),
            (region, channel, setup.sysClone({"reweight":["reweightPhotonSFDown"]}), None),

            (region, channel, setup.sysClone({"reweight":["reweightPhotonSFAltSigUp"]}), None),
            (region, channel, setup.sysClone({"reweight":["reweightPhotonSFAltSigDown"]}), None),

            (region, channel, setup.sysClone({"reweight":["reweightPhotonElectronVetoSFUp"]}), None),
            (region, channel, setup.sysClone({"reweight":["reweightPhotonElectronVetoSFDown"]}), None),

            (region, channel, setup.sysClone({"reweight":["reweightTriggerUp"]}), None),
            (region, channel, setup.sysClone({"reweight":["reweightTriggerDown"]}), None),

            (region, channel, setup.sysClone({"reweight":["reweightLeptonTightSFStatUp"]}), None),
            (region, channel, setup.sysClone({"reweight":["reweightLeptonTightSFStatDown"]}), None),

            (region, channel, setup.sysClone({"reweight":["reweightLeptonTightSFSystUp"]}), None),
            (region, channel, setup.sysClone({"reweight":["reweightLeptonTightSFSystDown"]}), None),

            (region, channel, setup.sysClone({"reweight":["reweightLeptonTightSFUp"]}), None),
            (region, channel, setup.sysClone({"reweight":["reweightLeptonTightSFDown"]}), None),
        ]


        # JEC Tags, (standard is "Total")
        jesTags = ['FlavorQCD', 'RelativeBal', 'HF', 'BBEC1', 'EC2', 'Absolute', 'Absolute_%i'%setup.year, 'HF_%i'%setup.year, 'EC2_%i'%setup.year, 'RelativeSample_%i'%setup.year, 'BBEC1_%i'%setup.year]
        for jes in jesTags:
            l += [
                   (region, channel, setup.sysClone({"selectionModifier":"jes%sUp"%jes}), None),
                   (region, channel, setup.sysClone({"selectionModifier":"jes%sDown"%jes}), None),
                 ]


        return l

    def getSigSysJobs(self, region, channel, setup):
        # in case there is a difference, enter it here (originally for fastSim)
        l  = self.getBkgSysJobs(region = region, channel = channel, setup = setup)
        l += [
            (region, channel, setup, "TuneUp"),
            (region, channel, setup, "TuneDown"),
            (region, channel, setup, "erdOn"),
            (region, channel, setup, "QCDbased"),
            (region, channel, setup, "GluonMove"),
        ]
        return l

    def getTexName(self, channel, rootTex=True):
        try:
          name = self.texName
        except:
          try:
            name = self.process[channel].texName
          except:
            try:
              texNames = [self.process[c].texName for c in allChannels]                # If all, only take texName if it is the same for all lepChannels
              if texNames.count(texNames[0]) == len(texNames):
                name = texNames[0]
              else:
                name = self.name
            except:
              name = self.name
        if not rootTex: name = "$" + name.replace("#","\\") + "$" # Make it tex format
        return name
Exemple #22
0
if args.inclRegion: regionNames.append("incl")
if args.misIDPOI: regionNames.append("misIDPOI")
if args.dyPOI: regionNames.append("dyPOI")
if args.wJetsPOI: regionNames.append("wJetsPOI")
if args.ttPOI: regionNames.append("ttPOI")
if args.useChannels:
    regionNames.append("_".join(
        [ch for ch in args.useChannels if not "tight" in ch]))

baseDir = os.path.join(cache_directory, "analysis", str(args.year), "limits")
limitDir = os.path.join(baseDir, "cardFiles", args.label,
                        "expected" if args.expected else "observed")
if not os.path.exists(limitDir): os.makedirs(limitDir)

cacheFileName = os.path.join(baseDir, "calculatednll")
nllCache = MergingDirDB(cacheFileName)
print cacheFileName

cacheFileName = os.path.join(baseDir, "calculatedLimits")
limitCache = MergingDirDB(cacheFileName)

cacheFileName = os.path.join(baseDir, "calculatedSignifs")
signifCache = MergingDirDB(cacheFileName)

cacheDir = os.path.join(cache_directory, "modelling", str(args.year))

cacheFileName = os.path.join(cacheDir, "Scale")
scaleUncCache = MergingDirDB(cacheFileName)

cacheFileName = os.path.join(cacheDir, "PDF")
pdfUncCache = MergingDirDB(cacheFileName)

# Text on the plots
def drawObjects(lumi_scale):
    tex = ROOT.TLatex()
    tex.SetNDC()
    tex.SetTextSize(0.04)
    tex.SetTextAlign(11)  # align right
    line = (0.68, 0.95, "%3.1f fb^{-1} (13 TeV)" % lumi_scale)
    lines = [(0.15, 0.95, "CMS #bf{#it{Preliminary}}"), line]
    return [tex.DrawLatex(*l) for l in lines]


cache_dir = os.path.join(cache_directory, "drawHistos", str(args.year),
                         args.selection, args.mode)
dirDB = MergingDirDB(cache_dir)
if not dirDB: raise

# Sample definition
os.environ["gammaSkim"] = "False"  #always false for QCD estimate
if args.year == 2016:
    from TTGammaEFT.Samples.nanoTuples_Summer16_private_semilep_postProcessed import *
    from TTGammaEFT.Samples.nanoTuples_Run2016_14Dec2018_semilep_postProcessed import *
    mc = [all_noQCD_16]
    data_sample = Run2016
elif args.year == 2017:
    from TTGammaEFT.Samples.nanoTuples_Fall17_private_semilep_postProcessed import *
    from TTGammaEFT.Samples.nanoTuples_Run2017_14Dec2018_semilep_postProcessed import *
    mc = [all_noQCD_17]
    data_sample = Run2017
elif args.year == 2018:
if args.uncorrVG: regionNames.append("uncorrVG")
if args.splitScale: regionNames.append("splitScale")
if args.noSystematics: regionNames.append("noSyst")
if args.splitMisIDExt: regionNames.append("splitMisIDExt")
if args.rSR: regionNames.append("rSR" + args.rSR)

if args.parameters:
    # load and define the EFT sample
    from TTGammaEFT.Samples.genTuples_TTGamma_EFT_postProcessed import *
    eftSample = TTG_2WC_ref

    baseDir = os.path.join(cache_directory, "analysis", "COMBINED", "limits")
    baseDir = os.path.join(baseDir,
                           "withbkg" if args.withbkg else "withoutbkg")
    cacheFileName = os.path.join(baseDir, "calculatednll")
    nllCache = MergingDirDB(cacheFileName)

    baseDir = os.path.join(cache_directory, "analysis", "eft")
    cacheFileName = os.path.join(baseDir, eftSample.name)
    yieldCache = MergingDirDB(cacheFileName)

    configlist = regionNames + EFTparams
    configlist.append("incl" if args.inclRegion else "diff")
    configlist.append("expected" if args.expected else "observed")

    sEFTConfig = "_".join(configlist)
#    if not args.overwrite and nllCache.contains( sEFTConfig ) and abs(nllCache.get(sEFTConfig)["nll0"])>0.1: sys.exit(0)

years = [2016, 2017, 2018]

Exemple #25
0

# Text on the plots
def drawObjects(lumi_scale):
    tex = ROOT.TLatex()
    tex.SetNDC()
    tex.SetTextSize(0.04)
    tex.SetTextAlign(11)  # align right
    line = (0.68, 0.95, "%3.1f fb^{-1} (13 TeV)" % lumi_scale)
    lines = [(0.15, 0.95, "CMS #bf{#it{Preliminary}}"), line]
    return [tex.DrawLatex(*l) for l in lines]


cache_dir = os.path.join(cache_directory, "drawHistos", str(args.year),
                         args.selection, args.mode)
dirDB = MergingDirDB(cache_dir)
if not dirDB: raise

# Sample definition
os.environ["gammaSkim"] = "False"  #always false for QCD estimate
if args.year == 2016:
    from TTGammaEFT.Samples.nanoTuples_Run2016_14Dec2018_semilep_postProcessed import Run2016 as data_sample
elif args.year == 2017:
    from TTGammaEFT.Samples.nanoTuples_Run2017_14Dec2018_semilep_postProcessed import Run2017 as data_sample
elif args.year == 2018:
    from TTGammaEFT.Samples.nanoTuples_Run2018_14Dec2018_semilep_postProcessed import Run2018 as data_sample
elif args.year == "RunII":
    from TTGammaEFT.Samples.nanoTuples_RunII_postProcessed import RunII as data_sample

filterCutData = getFilterCut(args.year,
                             isData=True,

# Text on the plots
def drawObjects(lumi_scale):
    tex = ROOT.TLatex()
    tex.SetNDC()
    tex.SetTextSize(0.04)
    tex.SetTextAlign(11)  # align right
    line = (0.68, 0.95, "%3.1f fb^{-1} (13 TeV)" % lumi_scale)
    lines = [(0.15, 0.95, "CMS #bf{#it{Preliminary}}"), line]
    return [tex.DrawLatex(*l) for l in lines]


cache_dir = os.path.join(cache_directory, "drawHistos", str(args.year),
                         args.selection, args.mode)
dirDB = MergingDirDB(cache_dir)
if not dirDB: raise

# Sample definition
os.environ["gammaSkim"] = "False"  #always false for QCD estimate
if args.year == 2016:
    from TTGammaEFT.Samples.nanoTuples_Run2016_14Dec2018_semilep_postProcessed import *
    data_sample = Run2016
elif args.year == 2017:
    from TTGammaEFT.Samples.nanoTuples_Run2017_14Dec2018_semilep_postProcessed import *
    data_sample = Run2017
    dataB = Run2017B
    dataC = Run2017C
    dataD = Run2017D
    dataE = Run2017E
    dataF = Run2017F
import RootTools.core.logger as logger_rt
logger = logger.get_logger(args.logLevel, logFile=None)
logger_rt = logger_rt.get_logger(args.logLevel, logFile=None)

args.preliminary = True

from Analysis.Tools.MergingDirDB import MergingDirDB
from TTGammaEFT.Tools.user import cache_directory
year = str(args.year)
if args.plotYear: year += "_" + str(args.plotYear)
cache_dir = os.path.join(cache_directory, "unfoldingTest", str(args.year),
                         "bkgSubstracted" if args.bkgSubstracted else "total",
                         "expected" if args.expected else "observed",
                         "postFit" if args.postFit else "preFit")
print cache_dir
dirDB = MergingDirDB(cache_dir)
if not dirDB: raise
addons = []

if args.plotRegions: addons += args.plotRegions
if args.plotChannels: addons += args.plotChannels

if args.year == "combined" and not args.plotYear:
    years = ["2016", "2017", "2018"]
elif args.year == "combined" and args.plotYear:
    years = [args.plotYear]
else:
    years = [None]

for i, year in enumerate(years):
    if year: addon = addons + [year]
import Analysis.Tools.logger as logger
import RootTools.core.logger as logger_rt
logger    = logger.get_logger(    args.logLevel, logFile = None )
logger_rt = logger_rt.get_logger( args.logLevel, logFile = None )

args.preliminary = True



from Analysis.Tools.MergingDirDB      import MergingDirDB
from TTGammaEFT.Tools.user    import cache_directory
year = str(args.year)
if args.plotYear: year += "_" + str(args.plotYear)
cache_dir = os.path.join(cache_directory, "unfolding", str(args.year), "bkgSubstracted" if args.bkgSubstracted else "total", "expected" if args.expected else "observed", "postFit" if args.postFit else "preFit")
print cache_dir
dirDB = MergingDirDB(cache_dir)
if not dirDB: raise
addons = []

if args.plotRegions:  addons += args.plotRegions
if args.plotChannels: addons += args.plotChannels

if args.year == "combined" and not args.plotYear:
    years = ["2016","2017","2018"]
elif args.year == "combined" and args.plotYear:
    years = [args.plotYear]
else:
    years = [None]

for i, year in enumerate(years):
    if year: addon = addons + [year]
Exemple #29
0

# Text on the plots
def drawObjects(lumi_scale):
    tex = ROOT.TLatex()
    tex.SetNDC()
    tex.SetTextSize(0.04)
    tex.SetTextAlign(11)  # align right
    line = (0.68, 0.95, "%3.1f fb^{-1} (13 TeV)" % lumi_scale)
    lines = [(0.15, 0.95, "CMS #bf{#it{Preliminary}}"), line]
    return [tex.DrawLatex(*l) for l in lines]


cache_dir = os.path.join(cache_directory, "drawHistos", str(args.year),
                         args.selection, args.mode)
dirDB = MergingDirDB(cache_dir)
if not dirDB: raise

# Sample definition
os.environ["gammaSkim"] = "False"  #always false for QCD estimate
if args.year == 2016:
    from TTGammaEFT.Samples.nanoTuples_Summer16_private_semilep_postProcessed import *
    from TTGammaEFT.Samples.nanoTuples_Run2016_14Dec2018_semilep_postProcessed import *
    mc = all_noQCD_16
    data_sample = Run2016
elif args.year == 2017:
    from TTGammaEFT.Samples.nanoTuples_Fall17_private_semilep_postProcessed import *
    from TTGammaEFT.Samples.nanoTuples_Run2017_14Dec2018_semilep_postProcessed import *
    mc = all_noQCD_17
    data_sample = Run2017
elif args.year == 2018:
Exemple #30
0
# Text on the plots
def drawObjects( lumi_scale ):
    tex = ROOT.TLatex()
    tex.SetNDC()
    tex.SetTextSize(0.04)
    tex.SetTextAlign(11) # align right
    line = (0.68, 0.95, "%i fb^{-1} (13 TeV)" % lumi_scale)
    lines = [
#      (0.15, 0.95, "CMS #bf{#it{Preliminary}} (%s)"%args.selection),
      (0.15, 0.95, "Private Work"),
      line
    ]
    return [tex.DrawLatex(*l) for l in lines]

cache_dir = os.path.join(cache_directory, "drawHistos", str(args.year), args.selection, args.mode)
dirDB = MergingDirDB(cache_dir)
if not dirDB: raise

# Sample definition
os.environ["gammaSkim"]="False" #always false for QCD estimate
if args.year == 2016:
    import TTGammaEFT.Samples.nanoTuples_Summer16_private_semilep_postProcessed as mc_samples
    from   TTGammaEFT.Samples.nanoTuples_Run2016_14Dec2018_semilep_postProcessed import Run2016 as data_sample
elif args.year == 2017:
    import TTGammaEFT.Samples.nanoTuples_Fall17_private_semilep_postProcessed as mc_samples
    from TTGammaEFT.Samples.nanoTuples_Run2017_14Dec2018_semilep_postProcessed import Run2017 as data_sample
elif args.year == 2018:
    import TTGammaEFT.Samples.nanoTuples_Autumn18_private_semilep_postProcessed as mc_samples
    from TTGammaEFT.Samples.nanoTuples_Run2018_14Dec2018_semilep_postProcessed import Run2018 as data_sample
elif args.year == "RunII":
    import TTGammaEFT.Samples.nanoTuples_RunII_postProcessed as mc_samples