def smaexit(df,smaperiod,cycle): for i in range(len(df)): code = DP.codeType(df.loc[i, 'code']) curclose = df.loc[i, 'curclose'] startdate = df.loc[i, 'time'] tradata = ts.get_k_data(code, ktype=cycle) tradata = pd.DataFrame(tradata.values, columns=tradata.columns) posindex =list(tradata['date']).index(startdate) closes = tradata['close'] posindex += 1 while(posindex < len(closes)): posclose = tradata.loc[posindex,'close'] possmaprice = sum(closes[posindex-smaperiod+1:posindex+1])/smaperiod if(posclose < possmaprice): exitprice = posclose exitdate = tradata.loc[posindex, 'date'] exitreturn = (exitprice - curclose) * 100 / curclose break posindex += 1 if(posindex == len(closes)): exitprice = posclose exitdate = tradata.loc[posindex-1, 'date'] exitreturn = (exitprice - curclose) * 100 / curclose df.loc[i,'exitdate'] = exitdate df.loc[i,'exitprice'] = exitprice df.loc[i,'exitreturn'] = exitreturn return df
def batch_position(codelist, period=240, value='position', Cycle='D'): colNames = ['code', 'name', 'position', 'curup', 'curdown'] dfPosition = DataFrame([], columns=colNames) index_date = DP.get_last_trade_time() for code, name in zip(codelist['code'], codelist['name']): code = DP.codeType(code) print(code) if (DI.is_tingpai(code)): continue df = ts.get_k_data(code, ktype=Cycle) if (len(df) == 0): continue closes = df['close'].values last_date = df.loc[len(df) - 1, 'date'] if (len(df) < period or last_date != index_date): continue closes = closes[-period:] position, curup, curdown = position_in_period(closes) s = Series([code, name, position, curup, curdown], index=colNames) dfPosition = dfPosition.append(s, ignore_index=True) dfPosition = dfPosition.sort_values(by=value, ascending=True) dfPosition = DataFrame(dfPosition.values, columns=dfPosition.columns) return dfPosition
def batch_vectorized_divergence(dataset='hs300', cycle='D'): colNames = [ 'code', 'time', 'period', 'curclose', 'sma', 'ATR', 'ATRRatio', 'rewardratio', 'riskratio', 'targetprice', 'cutshort', 'ATRWZ', 'rewardrisk', 'primImpScore', 'tradeImpScore', 'valuescore', 'primdivscore', 'divscore', 'difdeascore', 'macdscore', 'totalscore', 'targetprice1', 'targetprice2' ] codelist = DI.get_stockcode_list(dataset) dfScreen = codelist[['code', 'name']] totalrows = len(dfScreen) dftotal = DataFrame([], columns=colNames) for i in range(totalrows): code = dfScreen.loc[i, 'code'] print(code) code = DP.codeType(code) name = dfScreen.loc[i, 'name'] dfsub = vectorized_falsebreakout_divergence(code, cycle) dfsub['name'] = name dftotal = pd.concat([dftotal, dfsub]) RootDir = os.path.join(os.pardir, 'data', 'Vectorized', StrategyName) if (not os.path.exists(RootDir)): DP.mkdir(RootDir) filename = dataset + 'whole' + cycle + '.xls' filepath = os.path.join(RootDir, filename) dftotal = dftotal.sort_values(by='time') dftotal = DataFrame(dftotal.values, columns=dftotal.columns) dftotal = Performance.vectorized_forward_return(dftotal, cycle) DI.Write_DF_T0_Excel(filepath, dftotal, 'selected')
def get_stock_basic_parameters(code, Cycle='D', period=480): ''' :param code:股票代码 :param Cycle: 分析周期 :param period: 分析的时间周期 :return:返回指标列表: ['EMADir','SMADir','MACDDir','SMALight','EMALight','valuerel','ATRWz','ATRRatio', 'oneATR','twoATR','threeATR','moneATR','mtwoATR','mthreeATR','position','curup', 'curdown'] ''' code = DP.codeType(code) print(code) dfdata = ts.get_k_data(code, ktype=Cycle) if (len(dfdata) < 60): return None closes = dfdata['close'].values dates = dfdata['date'].values EMADir = ta.EMA_Direction(dates, closes) SMADir = ta.SMA_Direction(dates, closes) MACDDir = ta.MACD_Direction(dates, closes) SMALight = Triple.ImpluseLight(SMADir, MACDDir) EMALight = Triple.ImpluseLight(EMADir, MACDDir) valuerel = ta.SMAValueZone_GX(dates, closes) highs = dfdata['high'].values lows = dfdata['low'].values curatr = ta.last_atr(dates, closes, highs, lows) absdis, perdis, maprice = ta.curdistosma(closes, 20) ATRWz = absdis / curatr ATRRatio = absdis / maprice oneATR = maprice + curatr twoATR = maprice + 2 * curatr threeATR = maprice + 3 * curatr moneATR = maprice - curatr mtwoATR = maprice - 2 * curatr mthreeATR = maprice - 3 * curatr if (len(closes) > period): closes = closes[-period:] position, curup, curdown = Statistical.position_in_period(closes) valuelist = [ EMADir, SMADir, MACDDir, SMALight, EMALight, valuerel, ATRWz, ATRRatio, oneATR, twoATR, threeATR, moneATR, mtwoATR, mthreeATR, position, curup, curdown ] namelist = [ 'EMADir', 'SMADir', 'MACDDir', 'SMALight', 'EMALight', 'valuerel', 'ATRWz', 'ATRRatio', 'oneATR', 'twoATR', 'threeATR', 'moneATR', 'mtwoATR', 'mthreeATR', 'position', 'curup', 'curdown' ] colnames = [] for ele in namelist: name = Cycle + '-' + ele colnames.append(name) s = pd.Series(valuelist, index=colnames) return s
def vectorized_forward_return(df,cycle): forperiods = [1, 3, 5, 10, 15] for i in range(len(df)): code = DP.codeType(df.loc[i,'code']) curclose = df.loc[i,'curclose'] startdate = df.loc[i,'time'] tradata = ts.get_k_data(code,start=startdate,ktype=cycle) tradata = pd.DataFrame(tradata.values,columns=tradata.columns) closes = tradata['close'] for period in forperiods: if (period < len(closes)): forclose = closes[period] forreturn = (forclose - curclose) * 100 / curclose else: forclose = None forreturn = None df.loc[i,'close'+str(period)] = forclose df.loc[i, 'return' + str(period)] = forreturn return df
def batch_divergence_monitor(stocklist=None): lasttradetimestr = DP.get_last_trade_time('D') if stocklist is None: stocklist = ['longtou', 'etf'] for dataset in stocklist: for tradeCycle in ['W', 'D', '60', '30', '15']: colNames = [ 'code', 'name', 'cycle', 'period', 'curclose', 'sma', 'ATR', 'ATRRatio', 'rewardrisk', 'primImpScore', 'tradeImpScore', 'primdivscore', 'divscore', 'difdeascore', 'macdscore', 'totalscore' ] filename = StrategyName + '-' + dataset RootDir = os.path.join(os.pardir, 'data', lasttradetimestr) DP.mkdir(RootDir) filepath = os.path.join(RootDir, filename + '.csv') codelist = DI.get_stockcode_list(dataset) dfSelected = pd.DataFrame([], columns=colNames) dfScreen = codelist[['code', 'name']] totalrows = len(dfScreen) for i in range(totalrows): code = dfScreen.loc[i, 'code'] code = DP.codeType(code) name = dfScreen.loc[i, 'name'] #if(DI.is_tingpai(code)): # continue dfdata = ts.get_k_data(code, ktype=tradeCycle) if (len(dfdata) < 120): #剔除交易时间少于120天的个股 continue dates = dfdata['date'].values closes = dfdata['close'].values highs = dfdata['high'].values lows = dfdata['low'].values macddiclist = ta.cal_macd(dates, closes) macd, dif, dea = DP.get_macd_list(macddiclist) divStatus = ta.macd_in_bulldivergence_signal(dates, macd) divscore = divStatus['div'] macdscore = divStatus['macd'] period = divStatus['period'] if (divscore != 0): print(code, name, tradeCycle, divscore, macdscore, period) absdis, perdis, maprice = ta.curdistosma(closes, 20) curATR = ta.last_atr(dates, closes, highs, lows) ATRWZ = absdis / curATR curClose = closes[-1] ATRRatio = curATR / curClose primCycle = GetPrimaryCycle(tradeCycle) dataprimCycle = ts.get_k_data(code, ktype=primCycle) primCloses = dataprimCycle['close'].values primdates = dataprimCycle['date'].values primlows = dataprimCycle['low'].values primImpScore = FBD.ImpluseScore(primdates, primCloses) tradeImpScore = FBD.ImpluseScore(dates, closes) primmacd = pd.Series(ta.cal_macd(primdates, primCloses)) primmacd, primdif, primdea = DP.get_macd_list(primmacd) primdivStatus = ta.macd_in_bulldivergence_signal( primdates, primmacd) primdivscore = primdivStatus['div'] if (primdivscore != 0): primdivscore = 1 difdeadivscore = 0 if (ta.in_loose_bulldivergence(dif, period)): difdeadivscore += 1 if (ta.in_loose_bulldivergence(dea, period)): difdeadivscore += 1 totalscore = primImpScore + tradeImpScore + primdivscore + divscore + difdeadivscore + macdscore curATR = round(curATR, 2) ATRRatio = round(ATRRatio * 100, 2) ATRWZ = round(ATRWZ, 2) maprice = round(maprice, 2) s = Series([ code, name, tradeCycle, period, curClose, maprice, curATR, ATRRatio, ATRWZ, primImpScore, tradeImpScore, primdivscore, divscore, difdeadivscore, macdscore, totalscore ], index=colNames) dfSelected = dfSelected.append(s, ignore_index=True) dfSelected = dfSelected.sort_values(by='totalscore', ascending=False) dfSelected = pd.DataFrame(dfSelected.values, columns=dfSelected.columns) if os.path.exists(filepath): dfSelected.to_csv(filepath, mode='a', header=None) else: dfSelected.to_csv(filepath)
def screener2(): totalrows = len(dfScreen) for index in range(totalrows): code = dfScreen.loc[index, 'code'] code = DP.codeType(code) stockcode = code df_trade = ts.get_k_data(code=stockcode, ktype=tradecycle) dates = df_trade['date'] closes = df_trade['close'] lows = df_trade['low'] sma5 = ta.cal_sma(dates, closes, 5) sma5 = Series(sma5) macd = ta.cal_macd(dates, closes) macd = macd[len(macd) - len(sma5):] macd = Series(macd) sma5 = sma5[len(macd) - len(sma5):] sma5 = Series(sma5) df_trade = df_trade[len(df_trade) - len(sma5):] df_trade = DataFrame(df_trade.values, columns=df_trade.columns) df_trade['sma5'] = sma5 df_trade['macd'] = macd totalrows = len(df_trade) i = 5 while (i < totalrows): if (df_trade.loc[i, 'close'] > df_trade.loc[i, 'sma5']['sma5'] and df_trade.loc[i - 1, 'close'] < df_trade.loc[i, 'sma5']['sma5'] and df_trade.loc[i, 'macd']['diff'] > df_trade.loc[i, 'macd']['dea']): j = i while (j > 0): if df_trade.loc[j, 'macd']['diff'] < df_trade.loc[ j, 'macd']['dea']: break j -= 1 closesslice = closes[j:i] if (len(closesslice) < 8): i += 1 continue print(closesslice) k = np.argmax(closesslice) print('here') print(j, k, i) if (min(closesslice[j:k]) < min(closesslice[k:i])): date = df_trade.loc[i, 'date'][:10] df_prim = ts.get_k_data(code=stockcode, ktype=primarycycle, start='2000-01-01', end=date) primcloses = df_prim['close'][-5:] primclose = primcloses.values[-1] primsma5 = np.average(primcloses) primmacd = ta.cal_macd(dates, closes) primdiff = primmacd[len(primmacd) - 1]['diff'] primdea = primmacd[len(primmacd) - 1]['dea'] if (primclose > primsma5 and primdiff > primdea): #print(df_trade.loc[i, 'date']) curlows = lows[:i] curdates = dates[:i] difenxinglist = ta.get_pre_difenxing( curdates, curlows, 4) #print(difenxinglist) if (len(difenxinglist) < 4): continue # difenxinglist[0]['low'] < difenxinglist[1]['low'] and else: if (difenxinglist[1]['low'] < difenxinglist[2]['low'] and difenxinglist[2]['low'] < difenxinglist[3]['low']): print(stockcode, df_trade.loc[i, 'date']) i += 1
def batch_invaluezone_divergence(dataset='hs300', tradeCycle='D', recent=5): lasttradetimestr = DP.get_last_trade_time('D') colNames = [ 'code', 'name', 'period', 'curclose', 'sma', 'ATR', 'ATRRatio', 'rewardrisk', 'primImpScore', 'tradeImpScore', 'primdivscore', 'divscore', 'difdeascore', 'macdscore', 'totalscore' ] filename = StrategyName + lasttradetimestr + '-' + dataset + '-' + tradeCycle RootDir = os.path.join(os.pardir, 'data', lasttradetimestr) DP.mkdir(RootDir) filepath = os.path.join(RootDir, filename + '.xls') codelist = DI.get_stockcode_list(dataset) dfSelected = pd.DataFrame([], columns=colNames) dfScreen = codelist[['code', 'name']] totalrows = len(dfScreen) for i in range(totalrows): code = dfScreen.loc[i, 'code'] code = DP.codeType(code) name = dfScreen.loc[i, 'name'] if (DI.is_tingpai(code)): continue dfdata = ts.get_k_data(code, ktype=tradeCycle) if (len(dfdata) < 120): #剔除交易时间少于120天的个股 continue dates = dfdata['date'].values closes = dfdata['close'].values highs = dfdata['high'].values lows = dfdata['low'].values if (not ta.invaluezone(closes, 10, 20)): continue macddiclist = ta.cal_macd(dates, closes) macd, dif, dea = DP.get_macd_list(macddiclist) if (min(macd[-3:]) > 0): continue divStatus = ta.macd_in_bulldivergence(dates, macd) divscore = divStatus['div'] macdscore = divStatus['macd'] period = divStatus['period'] if (divscore != 0): print(code, name, divscore, macdscore, period) absdis, perdis, maprice = ta.curdistosma(closes, 20) curATR = ta.last_atr(dates, closes, highs, lows) ATRWZ = absdis / curATR curClose = closes[-1] ATRRatio = curATR / curClose primCycle = GetPrimaryCycle(tradeCycle) dataprimCycle = ts.get_k_data(code, ktype=primCycle) primCloses = dataprimCycle['close'].values primdates = dataprimCycle['date'].values primlows = dataprimCycle['low'].values primImpScore = FBD.ImpluseScore(primdates, primCloses) tradeImpScore = FBD.ImpluseScore(dates, closes) primmacd = pd.Series(ta.cal_macd(primdates, primCloses)) primmacd, primdif, primdea = DP.get_macd_list(primmacd) primdivStatus = ta.macd_in_bulldivergence_signal( primdates, primmacd) primdivscore = primdivStatus['div'] if (primdivscore != 0): primdivscore = 1 difdeadivscore = 0 if (ta.in_loose_bulldivergence(dif, period)): difdeadivscore += 1 if (ta.in_loose_bulldivergence(dea, period)): difdeadivscore += 1 totalscore = primImpScore + tradeImpScore + primdivscore + divscore + difdeadivscore + macdscore curATR = round(curATR, 2) ATRRatio = round(ATRRatio * 100, 2) ATRWZ = round(ATRWZ, 2) maprice = round(maprice, 2) colNames = [ 'code', 'name', 'period', 'curclose', 'sma', 'ATR', 'ATRRatio', 'ATRWZ', 'primImpScore', 'tradeImpScore', 'primdivscore', 'divscore', 'difdeascore', 'macdscore', 'totalscore' ] s = Series([ code, name, period, curClose, maprice, curATR, ATRRatio, ATRWZ, primImpScore, tradeImpScore, primdivscore, divscore, difdeadivscore, macdscore, totalscore ], index=colNames) dfSelected = dfSelected.append(s, ignore_index=True) dfSelected = dfSelected.sort_values(by='totalscore', ascending=False) dfSelected = pd.DataFrame(dfSelected.values, columns=dfSelected.columns) DI.Write_DF_T0_Excel(filepath, dfSelected, 'selected')
def vectorized_falsebreakout_divergence(code='510300', tradeCycle='D', recent=5): colNames = [ 'code', 'time', 'period', 'curclose', 'sma', 'ATR', 'ATRRatio', 'rewardratio', 'riskratio', 'targetprice', 'cutshort', 'ATRWZ', 'rewardrisk', 'primImpScore', 'tradeImpScore', 'valuescore', 'primdivscore', 'divscore', 'difdeascore', 'macdscore', 'totalscore', 'targetprice1', 'targetprice2' ] filename = StrategyName + '-' + code + '-' + tradeCycle dfSelected = pd.DataFrame([], columns=colNames) RootDir = os.path.join(os.pardir, 'data', 'Vectorized') DP.mkdir(RootDir) filepath = os.path.join(RootDir, filename + '.xls') code = DP.codeType(code) dfdata = ts.get_k_data(code, start='2000-01-01', ktype=tradeCycle) #start = '2016-01-01', if (len(dfdata) < 120): #剔除交易时间少于120天的个股 print('Not Enough data for decision making.') totaldates = dfdata['date'].values totalcloses = dfdata['close'].values totalhighs = dfdata['high'].values totallows = dfdata['low'].values macddiclist = ta.cal_macd(totaldates, totalcloses) totalmacd, totaldif, totaldea = DP.get_macd_list(macddiclist) i = 120 while i < len(totalcloses): closes = totalcloses[:i] highs = totalhighs[:i] lows = totallows[:i] macd = totalmacd[:i] dif = totaldif[:i] dea = totaldea[:i] dates = totaldates[:i] if (macd[-1] < macd[-2] or macd[-3] < macd[-2]): #macd[-1]> 0 这个条件由于without right shoulder删除 i = i + 1 continue divStatus = ta.macd_in_bulldivergence_signal(dates, macd) divscore = divStatus['div'] macdscore = divStatus['macd'] period = divStatus['period'] if (divscore != 0 and isPriceNewLow(lows, recent, period, tradeCycle)): date = dates[-1] absdis, perdis, maprice = ta.curdistosma(closes, 20) curATR = ta.last_atr(dates, closes, highs, lows) targetprice = maprice + 2 * curATR #应该是前高更合理 prelow = min(lows[-recent:]) # 因此此处要求近recent天创period天新低 cutshort = prelow ATRWZ = absdis / curATR curClose = closes[-1] targetprice2 = curClose + 2 * curATR targetprice3 = np.max(closes[-period:]) ATRRatio = curATR / curClose rewardratio = (targetprice - curClose) * 100 / curClose riskratio = (curClose - cutshort) * 100 / curClose rewardrisk = (targetprice - curClose) / (curClose - cutshort) primCycle = GetPrimaryCycle(tradeCycle) dataprimCycle = ts.get_k_data(code, ktype=primCycle) primCloses = dataprimCycle['close'].values primdates = dataprimCycle['date'].values primlows = dataprimCycle['low'].values primImpScore = ImpluseScore(primdates, primCloses) tradeImpScore = ImpluseScore(dates, closes) valuescore = value_score(dates, closes) primmacd = pd.Series(ta.cal_macd(primdates, primCloses)) primmacd, primdif, primdea = DP.get_macd_list(primmacd) isPrimNewLow = isPriceNewLow(primlows, recent, 30) primdivStatus = ta.macd_in_bulldivergence_signal( primdates, primmacd) primdivscore = primdivStatus['div'] if (primdivscore != 0 and isPrimNewLow != 0): primdivscore = 2 elif (primdivscore != 0): primdivscore = 1 difdeadivscore = 0 if (ta.in_loose_bulldivergence(dif, period)): difdeadivscore += 1 if (ta.in_loose_bulldivergence(dea, period)): difdeadivscore += 1 totalscore = primImpScore + tradeImpScore + valuescore + primdivscore + divscore + difdeadivscore + macdscore curATR = round(curATR, 2) ATRRatio = round(ATRRatio * 100, 2) rewardratio = round(rewardratio, 2) riskratio = round(riskratio, 2) ATRWZ = round(ATRWZ, 2) rewardrisk = round(rewardrisk, 2) targetprice = round(targetprice, 2) maprice = round(maprice, 2) s = Series([ code, date, period, curClose, maprice, curATR, ATRRatio, rewardratio, riskratio, targetprice, cutshort, ATRWZ, rewardrisk, primImpScore, tradeImpScore, valuescore, primdivscore, divscore, difdeadivscore, macdscore, totalscore, targetprice2, targetprice3 ], index=colNames) dfSelected = dfSelected.append(s, ignore_index=True) i += 1 #dfSelected = dfSelected.sort_values(by='totalscore',ascending=False) dfSelected = pd.DataFrame(dfSelected.values, columns=dfSelected.columns) #dfSelected.to_csv(filepath) DI.Write_DF_T0_Excel(filepath, dfSelected, 'selected') return dfSelected
def batch_falsebreakout_divergence(dataset='hs300', tradeCycle='D', recent=3): lasttradetimestr = DP.get_last_trade_time('D') ''' colNames = ['code', 'time', 'period', 'curclose', 'sma', 'ATR', 'ATRRatio', 'rewardratio', 'riskratio', 'targetprice', 'cutshort', 'ATRWZ', 'rewardrisk', 'primImpScore', 'tradeImpScore', 'valuescore', 'primdivscore', 'divscore', 'difdeascore', 'macdscore', 'totalscore','targetprice1','targetprice2'] ''' colNames = [ 'code', 'name', 'time', 'period', 'curclose', 'sma', 'ATR', 'ATRRatio', 'rewardratio', 'riskratio', 'targetprice', 'cutshort', 'ATRWZ', 'rewardrisk', 'primImpScore', 'tradeImpScore', 'valuescore', 'primdivscore', 'divscore', 'difdeascore', 'macdscore', 'totalscore', 'targetprice2', 'targetprice3' ] filename = StrategyName + lasttradetimestr + '-' + dataset + '-' + tradeCycle RootDir = os.path.join(os.pardir, 'data', lasttradetimestr) DP.mkdir(RootDir) filepath = os.path.join(RootDir, filename + '.xls') codelist = DI.get_stockcode_list(dataset) dfSelected = pd.DataFrame([], columns=colNames) dfScreen = codelist[['code', 'name']] totalrows = len(dfScreen) for i in range(totalrows): code = dfScreen.loc[i, 'code'] code = DP.codeType(code) name = dfScreen.loc[i, 'name'] if (DI.is_tingpai(code)): continue dfdata = ts.get_k_data(code, ktype=tradeCycle) if (len(dfdata) < 120): #剔除交易时间少于120天的个股 continue dates = dfdata['date'].values closes = dfdata['close'].values highs = dfdata['high'].values lows = dfdata['low'].values macddiclist = ta.cal_macd(dates, closes) macd, dif, dea = DP.get_macd_list(macddiclist) if (not (macd[-2] < 0 and macd[-2] < macd[-1] and macd[-2] < macd[-3])): continue if (code in dfSelected['code'].values): continue divStatus = ta.macd_in_bulldivergence_signal(dates, macd) divscore = divStatus['div'] macdscore = divStatus['macd'] period = divStatus['period'] if (divscore != 0 and isPriceNewLow(lows, recent, period)): absdis, perdis, maprice = ta.curdistosma(closes, 20) curATR = ta.last_atr(dates, closes, highs, lows) targetprice = maprice + 2 * curATR prelow = min(lows[-recent:]) #因此此处要求近recent天创period天新低 ATRWZ = absdis / curATR curClose = closes[-1] #cutshort = min(prelow, curClose - curATR) cutshort = prelow ATRRatio = curATR / curClose #rewardratio = (targetprice-curClose)*100/curClose riskratio = (curClose - cutshort) * 100 / curClose #rewardrisk = (targetprice-curClose)/(curClose-cutshort) primCycle = GetPrimaryCycle(tradeCycle) dataprimCycle = ts.get_k_data(code, ktype=primCycle) primCloses = dataprimCycle['close'].values primdates = dataprimCycle['date'].values primlows = dataprimCycle['low'].values primImpScore = ImpluseScore(primdates, primCloses) tradeImpScore = ImpluseScore(dates, closes) valuescore = value_score(dates, closes) primmacd = pd.Series(ta.cal_macd(primdates, primCloses)) primmacd, primdif, primdea = DP.get_macd_list(primmacd) isPrimNewLow = isPriceNewLow(primlows, recent, 30) primdivStatus = ta.macd_in_bulldivergence_signal( primdates, primmacd) primdivscore = primdivStatus['div'] if (primdivscore != 0 and isPrimNewLow != 0): primdivscore = 2 elif (primdivscore != 0): primdivscore = 1 difdeadivscore = 0 if (ta.in_loose_bulldivergence(dif, period)): difdeadivscore += 1 if (ta.in_loose_bulldivergence(dea, period)): difdeadivscore += 1 totalscore = primImpScore + tradeImpScore + valuescore + primdivscore + divscore + difdeadivscore + macdscore curATR = round(curATR, 4) targetprice2 = curClose + 2 * curATR targetprice3 = np.max(closes[-period:]) target = np.min( [float(targetprice), float(targetprice2), float(targetprice3)]) rewardratio = (target - curClose) * 100 / curClose rewardrisk = (target - curClose) / (curClose - cutshort) ATRRatio = round(ATRRatio * 100, 3) rewardratio = round(rewardratio, 3) riskratio = round(riskratio, 3) ATRWZ = round(ATRWZ, 3) rewardrisk = round(rewardrisk, 3) targetprice = round(targetprice, 3) maprice = round(maprice, 3) cutshort = round(cutshort, 3) import datetime curtime = datetime.datetime.now() selectedcolNames = [ 'ATR', 'ATRRatio', 'code', 'name', 'time', 'curclose', 'cutshort', 'rewardratio', 'riskratio', 'rewardrisk', 'sma', 'targetprice', 'targetprice2', 'targetprice3' ] print(curATR, ATRRatio, code, tradeCycle, name, curtime, curClose, cutshort, rewardratio, riskratio, rewardrisk, maprice, targetprice, targetprice2, targetprice3) s = Series([ code, name, curtime, period, curClose, maprice, curATR, ATRRatio, rewardratio, riskratio, targetprice, cutshort, ATRWZ, rewardrisk, primImpScore, tradeImpScore, valuescore, primdivscore, divscore, difdeadivscore, macdscore, totalscore, targetprice2, targetprice3 ], index=colNames) dfSelected = dfSelected.append(s, ignore_index=True) dfSelected = dfSelected[selectedcolNames] dfSelected = dfSelected.sort_values(by='time', ascending=False) dfSelected = pd.DataFrame(dfSelected.values, columns=dfSelected.columns) if (not os.path.exists(filepath)): DI.Write_DF_T0_Excel(filepath, dfSelected, 'selected') else: dftotal = DI.Get_TrdData_FromExcel(filepath, 'selected') dftotal = pd.concat([dftotal, dfSelected]) DI.Write_DF_T0_Excel(filepath, dftotal, 'selected')
def vectorized_smabreak_divergence(code='510300', tradeCycle='D'): colNames = [ 'time', 'code', 'curclose', 'sma', 'ATR', 'ATRRatio', 'ATRWZ', 'tradeImpScore', 'primImpScore' ] filename = StrategyName + '-' + code + '-' + tradeCycle dfSelected = pd.DataFrame([], columns=colNames) RootDir = os.path.join(os.pardir, 'data', 'Vectorized') filepath = os.path.join(RootDir, filename + '.xls') code = DP.codeType(code) startdate = '2000-01-01' dfdata = ts.get_k_data(code, start=startdate, end='', ktype=tradeCycle) if (len(dfdata) < 120): # 剔除交易时间少于120天的个股 print('Not Enough data for decision making.') totaldates = dfdata['date'].values totalcloses = dfdata['close'].values totalhighs = dfdata['high'].values totallows = dfdata['low'].values macddiclist = ta.cal_macd(totaldates, totalcloses) totalmacd, totaldif, totaldea = DP.get_macd_list(macddiclist) i = 120 while i < len(totalcloses): closes = totalcloses[:i] highs = totalhighs[:i] lows = totallows[:i] dates = totaldates[:i] if (not ta.smaupcrosssignal(closes, 20)): i += 1 continue primCycle = GetPrimaryCycle(tradeCycle) if (stock_in_divergece(code, primCycle, startdate=startdate, enddate=dates[-1])): absdis, perdis, maprice = ta.curdistosma(closes, 20) curATR = ta.last_atr(dates, closes, highs, lows) ATRWZ = absdis / curATR curClose = closes[-1] ATRRatio = curATR / curClose tradeImpScore = FBD.ImpluseScore(dates, closes) curATR = round(curATR, 2) ATRRatio = round(ATRRatio * 100, 2) ATRWZ = round(ATRWZ, 2) maprice = round(maprice, 2) dataprimCycle = ts.get_k_data(code, ktype=primCycle) primCloses = dataprimCycle['close'].values primdates = dataprimCycle['date'].values primImpScore = FBD.ImpluseScore(primdates, primCloses) s = Series([ dates[-1], code, curClose, maprice, curATR, ATRRatio, ATRWZ, tradeImpScore, primImpScore ], index=colNames) dfSelected = dfSelected.append(s, ignore_index=True) else: pass i += 1 # dfSelected = dfSelected.sort_values(by='totalscore',ascending=False) dfSelected = pd.DataFrame(dfSelected.values, columns=dfSelected.columns) # dfSelected.to_csv(filepath) DI.Write_DF_T0_Excel(filepath, dfSelected, 'selected') return dfSelected