import os, sys import tensorflow as tf from AnetLib.options.train_options import Options from AnetLib.models.models import create_model from smlm_datasets import create_data_sources default_workdir = './output/' + os.path.basename(sys.argv[0]) opt = Options().parse() opt.fineSize = 512 opt.batchSize = 1 # batchSize = 1 opt.model = 'a_net_tensorflow' opt.dim_ordering = 'channels_last' opt.display_freq = 500 opt.save_latest_freq = 1000 opt.use_resize_conv = True opt.norm_A = 'mean_std' opt.norm_B = 'min_max[0,1]' opt.lambda_A = 50 opt.input_nc = 2 opt.lr_nc = 1 opt.lr_scale = 1.0/4.0 opt.lambda_LR = 25 opt.control_nc = 1 opt.add_data_type_control = True opt.add_lr_channel = False opt.use_random_channel_mask = True opt.lr_loss_mode = 'lr_predict' if opt.phase == 'train': sources = create_data_sources('TransformedCSVImages', opt) d = sources['train']
def test_training(): opt = Options().parse(['--workdir=./__test_tmp__/']) opt.model = 'a_net_tensorflow' opt.fineSize = 256 opt.batchSize = 1 opt.dim_ordering = 'channels_last' opt.display_freq = 500 opt.use_resize_conv = True opt.norm_A = 'mean_std' opt.norm_B = 'min_max[0,1]' opt.lambda_A = 50 opt.input_nc = 2 opt.lr_nc = 1 opt.lr_scale = 1.0 / 4.0 opt.lambda_LR = 0 opt.control_nc = 1 opt.add_data_type_control = True opt.add_lr_channel = 'pseudo' # reduce the anet size opt.ngf = 1 opt.ndf = 1 # opt.continue_train = True # start training sources = create_data_sources(['TransformedTubulin001NB'], opt) d = sources['train'] model = create_model(opt) model.train(d, verbose=1, max_steps=1) # training done opt.phase = 'test' model = create_model(opt) sources = create_data_sources(['TransformedTubulin001NB'], opt) d = sources['test'] model.predict(d, verbose=1, max_steps=1)
#!/usr/bin/python # -*- coding: utf-8 -*- ''' Freeze A-Net models python3 freeze.py --workdir=./results/frozen_model_1 --load_dir=./results/simulated_model ''' import os import sys import tensorflow as tf from AnetLib.options.train_options import Options from AnetLib.models.models import create_model from smlm_datasets import create_data_sources from AnetLib.util.freeze_graph import freeze_latest_checkpoint default_workdir = './workdir' opt = Options().parse() opt.model = 'anet_tensorflow' opt.fineSize = 512 opt.batchSize = 1 opt.dim_ordering = 'channels_last' opt.display_freq = 500 opt.use_resize_conv = True opt.norm_A = 'mean_std' opt.norm_B = 'min_max[0,1]' opt.lambda_A = 50 opt.input_nc = 2 opt.lr_nc = 1 opt.lr_scale = 1.0/4.0 opt.lambda_LR = 0 opt.control_nc = 1 opt.add_data_type_control = True