Exemple #1
0
    def mutationBlockNumber(self, individuals, n_mutations, max_difference):
        """ Mutates n_mutations individuals and it adds or removes up to max_difference blocks """
        for a in range(n_mutations):
            n_blocks = random.randint(-max_difference, max_difference)
            indv_mut = individuals[random.randint(0, len(individuals) - 1)]

            if (n_blocks > 0):

                ny = math.floor((MAX_Y - MIN_Y) / SMALLEST_STEP)
                nx = math.floor((MAX_X - MIN_X) / SMALLEST_STEP)
                for b in range(n_blocks):
                    x = random.randint(0, nx)
                    y = random.randint(0, ny)
                    block = BlockGene(type=random.randint(1,
                                                          len(BLOCKS) - 1),
                                      pos=(MIN_X + SMALLEST_STEP * x,
                                           MIN_Y + SMALLEST_STEP * y),
                                      r=random.randint(0,
                                                       len(ROTATION) - 1))
                    indv_mut.appendBlock(block)
            else:
                for b in range(-n_blocks):
                    indv_mut.removeBlock(
                        random.randint(0,
                                       len(indv_mut.blocks()) - 1))
 def _initRandomBlock(self):
     """ Returns a randomly initialized BlockGene """
     return BlockGene(type=Random.randint(1,
                                          len(BLOCKS) - 1),
                      pos=(Random.uniform(MIN_X, MAX_X),
                           Random.uniform(MIN_Y, MAX_Y)),
                      r=Random.randint(0,
                                       len(ROTATION) - 1))
 def _initDiscreteBlock(self):
     """ Returns a randomly initialized BlockGene positioned in the grid given by the smallest Block size """
     ny = floor((MAX_Y - MIN_Y) / SMALLEST_STEP)
     nx = floor((MAX_X - MIN_X) / SMALLEST_STEP)
     x = Random.randint(0, nx)
     y = Random.randint(0, ny)
     return BlockGene(type = Random.randint(1, len(BLOCKS)-1),
                      pos = (MIN_X + SMALLEST_STEP * x, MIN_Y + SMALLEST_STEP * y),
                      r = Random.randint(0, len(ROTATION) - 1), m=Random.randint(0, len(MATERIALS) - 1))
Exemple #4
0
    def mutationBlockRotation(self, individuals, percentage_mutations):
        """ Mutates a percentage of individuals by adding 45 or -45 to the rotation of one of their blocks"""
        sample = random.sample(
            individuals,
            min(math.floor(len(individuals) * percentage_mutations),
                len(individuals)))
        for indv_mut in sample:
            block_i = random.randint(0, len(indv_mut.blocks()) - 1)
            block = BlockGene(type=indv_mut.blocks()[block_i].type,
                              pos=(indv_mut.blocks()[block_i].x,
                                   indv_mut.blocks()[block_i].y),
                              r=indv_mut.blocks()[block_i].rot)
            block.rot = (block.rot + random.choice([-1, 1])) % len(ROTATION)

            indv_mut.updateBlock(block_i, block)
Exemple #5
0
    def mutationBlockType(self, individuals, percentage_mutations):
        """ Mutates a percentage of individuals by changing the block type of one of their blocks"""
        sample = random.sample(
            individuals,
            min(math.floor(len(individuals) * percentage_mutations),
                len(individuals)))
        for indv_mut in sample:
            block_i = random.randint(0, len(indv_mut.blocks()) - 1)
            block = BlockGene(type=indv_mut.blocks()[block_i].type,
                              pos=(indv_mut.blocks()[block_i].x,
                                   indv_mut.blocks()[block_i].y),
                              r=indv_mut.blocks()[block_i].rot)
            block.type = (block.type + random.choice([-1, 1])) % len(BLOCKS)

            indv_mut.updateBlock(block_i, block)
    def test_cross_common(self):
        common = [
            BlockGene(type=1, pos=[0, 0], r=0),
            BlockGene(type=1, pos=[0.42, 0.42], r=0),
            BlockGene(type=1, pos=[0.42, 2.5], r=0)
        ]
        uncommon = [
            BlockGene(type=7, pos=[0.5, 1.5], r=2),
            BlockGene(type=7, pos=[0.8, 2.0], r=2)
        ]

        with mock.patch('random.shuffle', lambda x: uncommon):
            result = self.evolution.crossMaintainCommon(
                [self.individual_1, self.individual_2])

        self.assertTrue(
            np.all(
                np.asarray([
                    x for x in result[0].blocks() if x in common + uncommon[:1]
                ]))
            and np.all(
                np.asarray([
                    x for x in result[1].blocks() if x in common + uncommon[1:]
                ])))
Exemple #7
0
    def test_weird_case(self):
        individual = LevelIndividual([
            BlockGene(type=6, pos=[1.47, -2.88], r=1),
            BlockGene(type=3, pos=[0.0, -2.88], r=1),
            BlockGene(type=4, pos=[2.31, -0.5699999999999998], r=3),
            BlockGene(type=5, pos=[4.62, -1.41], r=3),
            BlockGene(type=5, pos=[1.26, -0.5699999999999998], r=1),
            BlockGene(type=2, pos=[0.0, -0.7799999999999998], r=3),
            BlockGene(type=3, pos=[4.41, -2.25], r=2),
            BlockGene(type=5, pos=[2.31, -3.09], r=0)
        ])

        print(individual.numberOverlappingBlocks())
        individual.calculatePreFitness()
        print(individual.fitness)
        individual.calculateFitness([22.38628, 12.7887])
        print(individual.fitness)
Exemple #8
0
 def setUp(self):
     self.block1 = BlockGene(type=0, pos=[0, 0], r=0)
     self.block2 = BlockGene(type=1, pos=[0, 0], r=1)
     self.individual = LevelIndividual([self.block1])
     self.blocklist1 = [
         BlockGene(type=0, pos=[0, 0], r=0),
         BlockGene(type=0, pos=[0.42, 0.42], r=0),
         BlockGene(type=0, pos=[0.42, 2.5], r=0),
         BlockGene(type=7, pos=[0.5, 1.5], r=2)
     ]
     self.individual2 = LevelIndividual(self.blocklist1)
Exemple #9
0
    def mutationBlockPositionY(self, individuals, percentage_mutations):
        """ Mutates a percentage of individuals by adding a value from [-1,0)(0,1] to the y coordinate of one of their blocks"""
        sample = random.sample(
            individuals,
            min(math.floor(len(individuals) * percentage_mutations),
                len(individuals)))
        for indv_mut in sample:
            block_i = random.randint(0, len(indv_mut.blocks()) - 1)
            block = BlockGene(type=indv_mut.blocks()[block_i].type,
                              pos=(indv_mut.blocks()[block_i].x,
                                   indv_mut.blocks()[block_i].y),
                              r=indv_mut.blocks()[block_i].rot)
            block.y = block.y + random.choice(
                [random.uniform(-1, -0.01),
                 random.uniform(0.01, 1)])

            indv_mut.updateBlock(block_i, block)
from math import floor
import copy
from AngryBirdsGA import *
import AngryBirdsGA.SeparatingAxisTheorem as SAT
from AngryBirdsGA.BlockGene import BlockGene


PREFIXED_INIT = [[BlockGene(type=7,pos=((MIN_X+MAX_X)/2,     MIN_Y+0.11),r=0),
                  BlockGene(type=7,pos=((MIN_X+MAX_X)/2,     MIN_Y+2.39),r=0),
                  BlockGene(type=7,pos=((MIN_X+MAX_X)/2-0.92,MIN_Y+1.23),r=2),
                  BlockGene(type=7,pos=((MIN_X+MAX_X)/2+0.92,MIN_Y+1.23),r=2)],
                 [BlockGene(type=7,pos=((MIN_X+MAX_X)/2,     MIN_Y+2.17),r=0),
                  BlockGene(type=7,pos=((MIN_X+MAX_X)/2-0.92,MIN_Y+1.06),r=2),
                  BlockGene(type=7,pos=((MIN_X+MAX_X)/2+0.92,MIN_Y+1.06),r=2),
                  BlockGene(type=7,pos=((MIN_X+MAX_X)/2,     MIN_Y+1.06),r=2)],
                 [BlockGene(type=7,pos=((MIN_X+MAX_X)/2,     MIN_Y+2.17),r=0),
                  BlockGene(type=7,pos=((MIN_X+MAX_X)/2-0.92,MIN_Y+1.06),r=2),
                  BlockGene(type=7,pos=((MIN_X+MAX_X)/2+0.92,MIN_Y+1.06),r=2)],
                 [BlockGene(type=7,pos=((MIN_X+MAX_X)/2+0.73,MIN_Y+1.23),r=2),
                  BlockGene(type=7,pos=((MIN_X+MAX_X)/2-0.73,MIN_Y+1.23),r=2),
                  BlockGene(type=6,pos=((MIN_X+MAX_X)/2,     MIN_Y+0.11),r=0),
                  BlockGene(type=6,pos=((MIN_X+MAX_X)/2,     MIN_Y+2.39),r=0)],
                ]

class LevelIndividual:

    def __init__(self, blocks):
        self._blocks = blocks
        self.fitness = None
        self.base_fitness = 0
        self.n_overlapping = self._initOverlappingBlocks()
Exemple #11
0
 def setUp(self):
     self.gene = BlockGene(type=1, pos=[0, 0], r=1)
     self.gene1 = BlockGene(type=2, pos=[0, 0], r=0)
Exemple #12
0
 def test_equals(self):
     self.assertTrue(self.gene == BlockGene(type=1, pos=[0, 0], r=1))
    def setUp(self):
        self.evolution = op.Evolution(game_path="",
                                      write_path="",
                                      read_path="")
        self.population_mock_1 = [
            LevelIndividual([]),
            LevelIndividual([]),
            LevelIndividual([]),
            LevelIndividual([])
        ]
        self.population_mock_2 = [
            LevelIndividual([]),
            LevelIndividual([]),
            LevelIndividual([]),
            LevelIndividual([])
        ]
        for n in range(len(self.population_mock_1)):
            self.population_mock_1[n].fitness = n
        for n in range(len(self.population_mock_2)):
            self.population_mock_2[n].fitness = n + len(self.population_mock_1)

        self.individual_1 = LevelIndividual([
            BlockGene(type=1, pos=[0, 0], r=0),
            BlockGene(type=1, pos=[0.42, 0.42], r=0),
            BlockGene(type=1, pos=[0.42, 2.5], r=0),
            BlockGene(type=7, pos=[0.5, 1.5], r=2)
        ])
        self.individual_2 = LevelIndividual([
            BlockGene(type=1, pos=[0, 0], r=0),
            BlockGene(type=1, pos=[0.42, 0.42], r=0),
            BlockGene(type=1, pos=[0.42, 2.5], r=0),
            BlockGene(type=7, pos=[0.8, 2.0], r=2)
        ])
        self.merged_blocks = [
            BlockGene(type=1, pos=[0, 0], r=0),
            BlockGene(type=1, pos=[0.42, 0.42], r=0),
            BlockGene(type=1, pos=[0.42, 2.5], r=0),
            BlockGene(type=7, pos=[0.5, 1.5], r=2),
            BlockGene(type=7, pos=[0.8, 2.0], r=2)
        ]
Exemple #14
0
 def test_overlapping_blocks_append(self):
     self.individual2.appendBlock(BlockGene(type=7, pos=[0.5, 1.5], r=0))
     self.assertEqual(self.individual2.numberOverlappingBlocks(), 8)
Exemple #15
0
 def test_overlapping_blocks_update(self):
     self.individual2.updateBlock(3, BlockGene(type=4, pos=[0.5, 1.5], r=0))
     self.assertEqual(self.individual2.numberOverlappingBlocks(), 2)
Exemple #16
0
 def test_try_append_block_success(self):
     block = BlockGene(type=0, pos=[2, 2], r=0)
     self.assertTrue(
         self.individual.tryAppendBlock(block)
         and self.individual.blocks() == [self.block1, block])