Exemple #1
0
 def test_relu_2_backward(self):
     print('\n==================================')
     print('          Test ReLU backward      ')
     print('==================================')
     np.random.seed(123)
     relu = ReLU()
     x = np.random.randn(7, 7)
     d_prev = np.random.randn(*x.shape)
     out = relu.forward(x)
     dx = relu.backward(d_prev, 0.0)
     correct_dx = [[0., -1.29408532, -1.03878821, 0., 0., 0.02968323, 0.],
                   [0., 1.75488618, 0., 0., 0., 0.79486267, 0.],
                   [
                       0., 0., 0.80723653, 0.04549008, -0.23309206,
                       -1.19830114, 0.19952407
                   ], [0.46843912, 0., 1.16220405, 0., 0., 1.03972709, 0.],
                   [0., 0., 0., 0., 0., 0., 0.80730819],
                   [0., -1.0859024, -0.73246199, 0., 2.08711336, 0., 0.],
                   [
                       0., 0.18103513, 1.17786194, 0., 1.03111446,
                       -1.08456791, -1.36347154
                   ]]
     e = rel_error(correct_dx, dx)
     print('dX relative difference:', e)
     self.assertTrue(e <= 5e-08)
Exemple #2
0
def test_model(num_feat, num_classes):
    classifier = ClassifierModel()
    classifier.add_layer('FC-1', FCLayer(num_feat, 2))
    classifier.add_layer('Sigmoid', Sigmoid())
    classifier.add_layer('FC-2', FCLayer(2, 5))
    classifier.add_layer('ReLU', ReLU())
    classifier.add_layer('FC-3', FCLayer(5, 3))
    classifier.add_layer('tanh', Tanh())
    classifier.add_layer('FC-4', FCLayer(3, num_classes))
    classifier.add_layer('Softmax', SoftmaxLayer())
    return classifier
Exemple #3
0
 def test_relu_1_forward(self):
     print('\n==================================')
     print('          Test ReLU forward       ')
     print('==================================')
     x = np.linspace(-0.7, 0.5, num=20).reshape(5, 4)
     relu = ReLU()
     out = relu.forward(x)
     correct_out = np.array(
         [[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.],
          [0.05789474, 0.12105263, 0.18421053, 0.24736842],
          [0.31052632, 0.37368421, 0.43684211, 0.5]])
     e = rel_error(correct_out, out)
     print('Relative difference:', e)
     self.assertTrue(e <= 5e-08)
Exemple #4
0
def test_model(num_feat, num_classes):
    classifier = CNN_Classifier()
    classifier.add_layer(
        'Conv-1', ConvolutionLayer(num_feat, 2, kernel_size=3, stride=1,
                                   pad=1))
    classifier.add_layer('ReLU', ReLU())
    classifier.add_layer(
        'Conv-2', ConvolutionLayer(2, 3, kernel_size=3, stride=1, pad=1))
    classifier.add_layer('tanh', Tanh())
    classifier.add_layer(
        'Conv-3', ConvolutionLayer(3, 3, kernel_size=3, stride=1, pad=0))
    classifier.add_layer('Sigmoid', Sigmoid())
    classifier.add_layer('Max-pool - 1',
                         MaxPoolingLayer(kernel_size=2, stride=1))
    classifier.add_layer('FC-4', FCLayer(12, num_classes))
    classifier.add_layer('Softmax', SoftmaxLayer())
    return classifier
Exemple #5
0
#   CNN 모델을 구성하고 실험하세요                                             #
#   레이어는 아래 예제와 같이 추가할 수 있습니다.                                 #
#   주의하세요! 레이어들은 추가한 순서대로 실행됩니다.                             #
#   Layer에 따라, 구현에 따라 다르지만 1 Epoch에 5분 이상 걸려도 정상입니다.        #
#   ^^                                                                    #
#                                                                         #
###########################################################################

# Add Layers, Layer 추가 예제
# 아래 예시를 참고하여 과제에 주어진 대로 (혹은 과제와 별개로 원하는 대로) Layer를 추가하세요.

# Convolution Layer
CNN.add_layer('Conv Layer - 1', ConvolutionLayer(in_channels=in_channnel, out_channels=8, kernel_size=3, pad=1))

# ReLU Layer
CNN.add_layer('ReLU Layer - 1', ReLU())

# Convolution Layer 
CNN.add_layer('Conv Layer - 2', ConvolutionLayer(in_channels=8, out_channels=8, kernel_size=3, pad=1))

# ReLU Layer
CNN.add_layer('ReLU Layer - 2', ReLU())

# Max-pool Layer
CNN.add_layer('Max-Pool Layer', MaxPoolingLayer(kernel_size=2, stride=2))

# FC Layer
CNN.add_layer('FC Example Layer - 1', FCLayer(input_dim=1568, output_dim=500))

# FC Layer
CNN.add_layer('FC Example Layer - 2', FCLayer(input_dim=500, output_dim=5))
Exemple #6
0
#plt.show()

# ===========================================================================

print(
    '================================ 2. ReLU =================================='
)
"""
* Correct ReLU *

Forward: 
 [1. 0. 3.]
Backward: 
 [-10   0 -30]
"""
relu = ReLU()
temp2 = np.array([1, -0.1, 3], dtype=np.float32)
temp3 = np.array([-10, -20, -30], dtype=np.float32)
print('ReLU Check')
print('Forward: \n', relu.forward(temp2))
print('Backward: \n', relu.backward(temp3))
print()

# ===========================================================================

print(
    '=========================== 3. Convolution Layer =========================='
)
# Convolution with stride 1, no padding
in_channel = 1
out_channel = 3
Exemple #7
0
  ex) shuffle data every epoch (You don't need to care this. But you can try personally.)
  ex) set/change random seed (I've already done it.)

"""

print('===== ReLU Check =====')
"""
The results should be exactly same as below:
결과는 아래와 일치해야 합니다:

Forward: 
 [1. 0. 3.]
Backward: 
 [-10   0 -30]
"""
relu = ReLU()
temp2 = np.array([1, -0.1, 3])
temp3 = np.array([-10, -20, -30])

print('Forward: \n', relu.forward(temp2))
print('Backward: \n', relu.backward(temp3))
print()

print('===== Sigmoid Check =====')
"""
The results should be exactly same as below:
결과는 아래와 일치해야 합니다:

Forward: 
 [[0.26894142 0.88079708 0.62245933]
 [0.5        0.47502081 0.52497919]]
Exemple #8
0
#   Enjoy.                                                                #
#                                                                         #
#   CNN 모델을 구성하고 실험하세요                                             #
#   레이어는 아래 예제와 같이 추가할 수 있습니다.                                 #
#   주의하세요! 레이어들은 추가한 순서대로 실행됩니다.                             #
#   Layer에 따라, 구현에 따라 다르지만 1 Epoch에 5분 이상 걸려도 정상입니다.        #
#   ^^                                                                    #
#                                                                         #
###########################################################################

# Add Layers, Layer 추가 예제
# 아래 예시를 참고하여 과제에 주어진 대로 (혹은 과제와 별개로 원하는 대로) Layer를 추가하세요.

# Convolution Layer
CNN.add_layer('Conv Layer 1', ConvolutionLayer(in_channels=in_channnel, out_channels=8, kernel_size=3, pad=1))
CNN.add_layer('ReLU 1', ReLU())
CNN.add_layer('Conv Layer 2', ConvolutionLayer(in_channels=8, out_channels=8, kernel_size=3, pad=1))
CNN.add_layer('ReLU 2', ReLU())

# Max-pool Layer
CNN.add_layer('Max-Pool Layer', MaxPoolingLayer(kernel_size=2, stride=2))

# FC Layer
CNN.add_layer('FC Layer 1', FCLayer(input_dim=1568, output_dim=500))
CNN.add_layer('FC Layer 2', FCLayer(input_dim=500, output_dim=5))

# Softmax Layer
# 이 layer는 항상 마지막에 추가
CNN.add_layer('Softmax Layer', SoftmaxLayer())

# Model Architecture 출력
Exemple #9
0
#                                                                         #
###########################################################################

# Add Layers, Layer 추가 예제
# 아래 예시를 참고하여 과제에 주어진 대로 (혹은 과제와 별개로 원하는 대로) Layer를 추가하세요.

# Convolution Layer
CNN.add_layer(
    'Conv Example Layer',
    ConvolutionLayer(in_channels=in_channnel,
                     out_channels=8,
                     kernel_size=3,
                     pad=1))

# ReLU Layer
CNN.add_layer('ReLU Example Layer', ReLU())

# Convolution Layer
CNN.add_layer(
    'Conv Example Layer2',
    ConvolutionLayer(in_channels=8, out_channels=8, kernel_size=3, pad=1))

# ReLU Layer
CNN.add_layer('ReLU Example Layer2', ReLU())

# Max-pool Layer
CNN.add_layer('Max-Pool Example Layer', MaxPoolingLayer(kernel_size=2,
                                                        stride=2))

# FC Layer
CNN.add_layer('FC Example Layer1', FCLayer(input_dim=1568, output_dim=500))
Exemple #10
0
num_train, in_channels, H, W = x_train.shape
num_class = y_train.shape[1]

train_accuracy = []
valid_accuracy = []

best_epoch = -1
best_acc = -1
best_model = None

# =============================== EDIT HERE ===============================

# Add layers
CNN.add_layer('Conv-1', ConvolutionLayer(in_channels=in_channels, out_channels=4, kernel_size=3, pad=1))
CNN.add_layer('ReLU-1',ReLU())
CNN.add_layer('Conv-2', ConvolutionLayer(in_channels=4, out_channels=4, kernel_size=3, pad=1))
CNN.add_layer('ReLU-2',ReLU())
CNN.add_layer('Max-pool-1',MaxPoolingLayer(2,2))
CNN.add_layer('FC-1',FCLayer(784,500))
CNN.add_layer('ReLU-3',ReLU())
CNN.add_layer('FC-2',FCLayer(500,10))
CNN.add_layer('Softmax Layer',SoftmaxLayer())

# =========================================================================

CNN.summary()

print('Training Starts...')
num_batch = int(np.ceil(num_train / batch_size))