Exemple #1
0
print('[Answer]')
print(correct_sm)
print('[Submit]')
print(sm)
print()

y = np.array([[1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., 1., 0.]])
y_hat = np.array([[0.25, 0.25, 0.25, 0.25], [0.9, 0.033, 0.033, 0.033],
                  [0.0, 0.0, 1.0, 0.0]])

# Cross-entropy Loss
# Backward

# For d_softmax, difference should be very small a

ce_loss = softmax_layer.ce_loss(y_hat, y)
d_softmax = softmax_layer.backward(d_prev=1)
print('CE Loss Difference : ', correct_ce_loss - ce_loss)
print()

print(' d_softmax ')
print('[Answer]')
print(correct_d_softmax)
print('[Submit]')
print(d_softmax)
print()

# ===========================================================================

print(
    '============================= 7. CNN Classifier ==========================='
Exemple #2
0
class TestSoftmaxLayer(unittest.TestCase):
    def setUp(self):
        self.softmax_layer = SoftmaxLayer()

    def test_softmax_layer_1_forward(self):
        print('\n==================================')
        print('    Test softmax layer forward    ')
        print('==================================')
        np.random.seed(123)
        x = np.random.randn(5, 5)

        softmax_out = self.softmax_layer.forward(x)
        correct_out = [
            [0.06546572, 0.52558012, 0.25727246, 0.04298548, 0.10869621],
            [0.52561239, 0.00890353, 0.06564194, 0.3574744, 0.04236773],
            [0.07215113, 0.12940411, 0.63209441, 0.07509449, 0.09125586],
            [0.02836542, 0.39760227, 0.39006297, 0.11953103, 0.06443832],
            [0.20005518, 0.42494369, 0.03753939, 0.31014926, 0.02731249]
        ]

        e = rel_error(correct_out, softmax_out)
        print('Relative difference:', e)
        self.assertTrue(e <= 1e-6)

        out_sum = np.sum(softmax_out)
        sum_e = out_sum - len(x)
        print('Softmax sum error:', sum_e)
        self.assertTrue(sum_e == 0)

    def test_softmax_layer_2_ce_loss(self):
        print('\n==================================')
        print('    Test softmax layer ce loss    ')
        print('==================================')
        np.random.seed(123)
        x = np.random.randn(5, 5)
        num_data, num_classes = x.shape

        y_hat = self.softmax_layer.forward(x)
        y = np.zeros_like(y_hat)
        y_labels = np.random.permutation(num_data)
        y[list(range(len(y_labels))), y_labels] = 1
        loss = self.softmax_layer.ce_loss(y_hat, y)

        correct_loss = 2.3052757961131616

        e = rel_error(correct_loss, loss)
        print('Relative difference:', e)
        self.assertTrue(e <= 1e-11)

    def test_softmax_layer_3_backward(self):
        print('\n==================================')
        print('    Test softmax layer backward   ')
        print('==================================')
        np.random.seed(123)
        x = np.random.randn(5, 5)
        num_data, num_classes = x.shape

        y_hat = self.softmax_layer.forward(x)
        y = np.zeros_like(y_hat)
        y_labels = np.random.permutation(num_data)
        y[list(range(len(y_labels))), y_labels] = 1
        loss = self.softmax_layer.ce_loss(y_hat, y)
        dx = self.softmax_layer.backward(d_prev=1)

        correct_dx = [
            [0.01309314, 0.10511602, -0.14854551, 0.0085971, 0.02173924],
            [0.10512248, 0.00178071, 0.01312839, 0.07149488, -0.19152645],
            [0.01443023, 0.02588082, 0.12641888, -0.1849811, 0.01825117],
            [-0.19432692, 0.07952045, 0.07801259, 0.02390621, 0.01288766],
            [0.04001104, -0.11501126, 0.00750788, 0.06202985, 0.0054625]
        ]

        e = rel_error(correct_dx, dx)
        print('Relative difference:', e)
        self.assertTrue(e <= 1e-6)

    def runTest(self):
        self.test_softmax_layer_1_forward()
        self.test_softmax_layer_2_ce_loss()
        self.test_softmax_layer_3_backward()