Exemple #1
0
    def test_grid_search(self):
        # Test that the best estimator contains the right value for foo_param
        clf = MockClassifier()
        grid_search = ATGridSearchCV(clf, {'foo_param': [1, 2, 3]},
                                     verbose=3,
                                     webserver_url=self.live_server_url)
        # make sure it selects the smallest parameter in case of ties
        old_stdout = sys.stdout
        sys.stdout = StringIO()
        wait(grid_search.fit(X, y))
        sys.stdout = old_stdout
        self.assertIn(grid_search.best_estimator_.foo_param, [2, 3])

        _mock_sort = partial(_sort_grid_scores, param='foo_param')

        for idx, tup in enumerate(
                sorted(grid_search.grid_scores_, key=cmp_to_key(_mock_sort))):
            self.assertEqual(tup[0], {'foo_param': idx + 1},
                             '%d%s' % (idx, tup))

        # Smoke test the score etc:
        grid_search.score(X, y)
        grid_search.predict_proba(X)
        grid_search.decision_function(X)
        grid_search.transform(X)

        # Test exception handling on scoring
        grid_search.scoring = 'sklearn'
        self.assertRaises(ValueError, grid_search.fit, X, y)
Exemple #2
0
 def test_transform_inverse_transform_round_trip(self):
     clf = MockClassifier()
     grid_search = ATGridSearchCV(clf, {'foo_param': [1, 2, 3]},
                                  verbose=3,
                                  webserver_url=self.live_server_url)
     wait(grid_search.fit(X, y))
     X_round_trip = grid_search.inverse_transform(grid_search.transform(X))
     assert_array_equal(X, X_round_trip)