for n in np.arange(N_sim): print('SIMULATION ', n + 1) model = AuGMEnT(S, R, M, A, alpha, beta, discount, eps, g, leak, rew, dic_stim, dic_resp, prop) E[n, :], conv_ep[n], REW[n, :] = model.training_12AX( N_trial, p_target, criterion, stop, verb, policy, stoc, t_weighted, e_weighted) print('\t CONVERGED AT TRIAL ', conv_ep[n]) if do_test: N_test = 1000 perc_expl[n], perc_no_expl[n], perc_soft[n] = model.test( N_test, p_target) print('Percentage of correct trials during test (exploration): ', perc_expl[n], '%') print('Percentage of correct trials during test (no exploration): ', perc_no_expl[n], '%') print('Percentage of correct trials during test (softmax): ', perc_soft[n], '%') folder = 'DATA' str_conv = folder + '/' + policy_str + '/conv_long_2.txt' np.savetxt(str_conv, conv_ep) E_mean = np.mean(np.reshape(E, (N_sim, -1, 50)), axis=2) str_err = folder + '/' + policy_str + '/error_long_2.txt' np.savetxt(str_err, E_mean) R_mean = np.mean(np.reshape(REW, (N_sim, -1, 50)), axis=2) str_r = folder + '/' + policy_str + '/reward_long_2.txt'
criterion = 'strong' do_test = True for n in np.arange(N_sim): print('SIMULATION ', n + 1) model = AuGMEnT(S, R, M, A, alpha, beta, discount, eps, g, leak, rew, dic_stim, dic_resp, prop) E[n, :], conv_ep[n] = model.training_12AX(N_trial, p_target, criterion, stop) print('\t CONVERGED AT TRIAL ', conv_ep[n]) if do_test: N_test = 1000 perc[n] = model.test(N_test, p_target) print('Percentage of correct trials during test: ', perc, '%') folder = 'DATA' str_conv = folder + '/AuGMEnT_' + task + '_conv.txt' np.savetxt(str_conv, conv_ep) E_mean = np.mean(np.reshape(E, (-1, 50)), axis=1) str_err = folder + '/AuGMEnT' + task + '_error.txt' np.savetxt(str_err, E_mean) if do_test: str_perc = folder + '/AuGMEnT' + task + '_perc.txt' np.savetxt(str_perc, perc)