Exemple #1
0
    def evaluateRecommendations(self,
                                URM_test,
                                at=5,
                                minRatingsPerUser=1,
                                exclude_seen=True,
                                filterCustomItems=np.array([], dtype=np.int),
                                filterCustomUsers=np.array([], dtype=np.int)):
        """
        Speed info:
        - Sparse weighgs: batch mode is 2x faster than sequential
        - Dense weighgts: batch and sequential speed are equivalent


        :param URM_test:            URM to be used for testing
        :param at: 5                    Length of the recommended items
        :param minRatingsPerUser: 1     Users with less than this number of interactions will not be evaluated
        :param exclude_seen: True       Whether to remove already seen items from the recommended items

        :param mode: 'sequential', 'parallel', 'batch'
        :param filterTopPop: False or decimal number        Percentage of items to be removed from recommended list and testing interactions
        :param filterCustomItems: Array, default empty           Items ID to NOT take into account when recommending
        :param filterCustomUsers: Array, default empty           Users ID to NOT take into account when recommending
        :return:
        """

        import warnings

        warnings.warn(
            "DEPRECATED! Use Base.Evaluation.SequentialEvaluator.evaluateRecommendations()",
            DeprecationWarning)

        from Base.Evaluation.Evaluator import SequentialEvaluator

        evaluator = SequentialEvaluator(URM_test, [at],
                                        exclude_seen=exclude_seen,
                                        minRatingsPerUser=minRatingsPerUser,
                                        ignore_items=filterCustomItems,
                                        ignore_users=filterCustomUsers)

        results_run, results_run_string = evaluator.evaluateRecommender(self)

        results_run = results_run[at]

        results_run_lowercase = {}

        for key in results_run.keys():
            results_run_lowercase[key.lower()] = results_run[key]

        return results_run_lowercase
Exemple #2
0
            "lambda_j": [0.9408725374123923, 0.9408725374123923],
            "num_factors": [395, 391, 95],
            'alphaP3': [0.7100641282565131, 1.2827139967773968],
            'alphaRP3': [0.8182264529058118, 0.8182264529058118],
            'betaRP': [0.3775651302605211, 0.3775651302605211],
            'l1_ratio': l1_ratio,
            'epochs': 1,
            "weights_to_dweights": -1})

        print("TEST")

        print("Starting Evaluations...")
        # to indicate if plotting for lenght or for pop

        results_run, results_run_string, target_recommendations = evaluator.evaluateRecommender(recommender,
                                                                                                plot_stats=True,
                                                                                                onPop=onPop)

        print("Algorithm: {}, results: \n{}".format([rec.__class__ for rec in recommender.recommender_list],
                                                    results_run_string))
        logFile.write("Algorithm: {}, results: \n{}\n".format(recommender.__class__, results_run_string))
        logFile.flush()

        if not evaluate_algorithm:
            target_playlist = dataReader.get_target_playlist()
            md.assign_recomendations_to_correct_playlist(target_playlist, target_recommendations)
            md.make_CSV_file(target_playlist, filename)
            print('File {} created!'.format(filename))


    except Exception as e:

for x in only_sum_equal_1:
    print("-------------------")
    print("---weights = {}---".format(x))
    print("-------------------")
    hybridRecommender_scores.fit(weights=x)
    # print("-------------------")
    # print("---Hybrid fitted---")
    # print("-------------------")

    print("-------------------")
    print("-Hybrid Evaluation-")
    print("-------------------")

    dict, _ = evaluator_test.evaluateRecommender(hybridRecommender_scores)

    writeLog("---weights = {}---".format(x), output_file)
    writeLog("--- Parameters : {} ".format(dict), output_file)
    print(dict)





# target_data = pd.read_csv('data/target_playlists.csv')
#
# print("--------------------------")
# print("------Recommendation------")
# print("--------------------------")
# ws.write_submission(target_data, , 'output/submission.csv', at=10)
Exemple #4
0
    topK_list = list(range(1, 800, 10))
    alpha_list = list(np.linspace(0.001, 2.0, 500))  # range(0, 2)
    beta_list = list(np.linspace(0.001, 2.0, 500))

    total_permutations = [
        x for x in list(itertools.product(topK_list, alpha_list, beta_list))
    ]
    shuffle(total_permutations)

    iter = 0
    start_time = time.time()
    for topK, alpha, beta in total_permutations:
        if time.time() - start_time > 60 * 60 * 5:
            # after 5 hours stop it!
            continue

        if iter > 30:
            continue

        recommender.fit(**{"topK": topK, 'alpha': alpha, 'beta': beta})

        results_run, results_run_string, target_recommendations = evaluator.evaluateRecommender(
            recommender)

        print("Rp3beta params topK: {}, alpha: {}, beta: {}, MAP: {}".format(
            topK, alpha, beta, results_run[10]['MAP']))

        gc.collect()
        iter += 1
Exemple #5
0
    for recommender_class in recommender_list:

        try:

            print("Algorithm: {}".format(recommender_class))
            recommender = recommender_class(URM_train)

            item = ItemKNNCFRecommender(URM_train)
            W_sparse_CF = item.fit(topK=800,
                                   shrink=8,
                                   similarity='cosine',
                                   normalize=True)
            CFW_weithing = CFW_D_Similarity_Linalg(URM_train, ICM_Art,
                                                   W_sparse_CF)
            CFW_weithing.fit(topK=8, loss_tolerance=1e-04, add_zeros_quota=0)
            recommender.fit(CFW=CFW_weithing)
            results_run, results_run_string = evaluator.evaluateRecommender(
                recommender)
            print("Algorithm: {}, results: \n{}".format(
                recommender.__class__, results_run_string))
            logFile.write("Algorithm: {}, results: \n{}\n".format(
                recommender.__class__, results_run_string))
            logFile.flush()

        except Exception as e:
            traceback.print_exc()
            logFile.write("Algorithm: {} - Exception: {}\n".format(
                recommender_class, str(e)))
            logFile.flush()  # -*- coding: utf-8 -*-
def run():
    evaluate_algorithm = True
    delete_old_computations = False
    slim_after_hybrid = False

    # delete_previous_intermediate_computations()
    # if not evaluate_algorithm:
    #     delete_previous_intermediate_computations()
    # else:
    #     print("ATTENTION: old intermediate computations kept, pay attention if running with all_train")
    # delete_previous_intermediate_computations()
    filename = "hybrid_ICB_ICF_UCF_IALS_SLIM_ELASTIC_local_081962.csv"

    dataReader = RS_Data_Loader(all_train=not evaluate_algorithm)

    URM_train = dataReader.get_URM_train()
    URM_PageRank_train = dataReader.get_page_rank_URM()
    URM_validation = dataReader.get_URM_validation()
    URM_test = dataReader.get_URM_test()
    ICM = dataReader.get_ICM()
    UCM_tfidf = dataReader.get_tfidf_artists()
    # _ = dataReader.get_tfidf_album()

    recommender_list1 = [
        # Random,
        # TopPop,
        ItemKNNCBFRecommender,
        # UserKNNCBRecommender,
        ItemKNNCFRecommender,
        UserKNNCFRecommender,
        # P3alphaRecommender,
        # RP3betaRecommender,
        # MatrixFactorization_BPR_Cython,
        # MatrixFactorization_FunkSVD_Cython,
        IALS_numpy,
        SLIM_BPR_Cython,
        # ItemKNNCFRecommenderFAKESLIM,
        # PureSVDRecommender,
        SLIMElasticNetRecommender
    ]

    from Base.Evaluation.Evaluator import SequentialEvaluator

    evaluator = SequentialEvaluator(URM_test, URM_train, exclude_seen=True)

    output_root_path = "result_experiments/"

    # If directory does not exist, create
    if not os.path.exists(output_root_path):
        os.makedirs(output_root_path)

    logFile = open(output_root_path + "result_all_algorithms.txt", "a")

    try:
        recommender_class = HybridRecommender
        print("Algorithm: {}".format(recommender_class))
        '''
        Our optimal run
        '''
        recommender_list = recommender_list1  # + recommender_list2  # + recommender_list3

        onPop = False

        # On pop it used to choose if have dynamic weights for
        recommender = recommender_class(URM_train,
                                        ICM,
                                        recommender_list,
                                        URM_PageRank_train=URM_PageRank_train,
                                        dynamic=False,
                                        UCM_train=UCM_tfidf,
                                        URM_validation=URM_validation,
                                        onPop=onPop)

        recommender.fit(
            **{
                "topK": [10, 181, 82, -1, 761, 490],
                "shrink": [8, 0, 3, -1, -1, -1],
                "pop": [280],
                "weights": [
                    0.47412263345597117, 1.3864620551711606,
                    0.6224999770898935, 1.5498327677561246, 0.1993692779443738,
                    2.113324096784624
                ],
                "final_weights": [1, 1],
                "force_compute_sim":
                False,  # not evaluate_algorithm,
                "feature_weighting_index":
                0,
                "epochs":
                150,
                'lambda_i': [0.0],
                'lambda_j': [1.0153577332223556e-08],
                'SLIM_lr': [0.1],
                'alphaP3': [0.4121720883248633],
                'alphaRP3': [0.8582865731462926],
                'betaRP': [0.2814208416833668],
                'l1_ratio':
                3.020408163265306e-06,
                'alpha':
                0.0014681984611695231,
                'tfidf': [True],
                "weights_to_dweights":
                -1,
                "IALS_num_factors":
                290,
                "IALS_reg":
                0.001,
                "IALS_iters":
                6,
                "IALS_scaling":
                'log',
                "IALS_alpha":
                40,
                "filter_top_pop_len":
                0
            })

        print("TEST")

        print("Starting Evaluations...")
        # to indicate if plotting for lenght or for pop

        results_run, results_run_string, target_recommendations = evaluator.evaluateRecommender(
            recommender, plot_stats=False, onPop=onPop)

        print("Algorithm: {}, results: \n{}".format(
            [rec.RECOMMENDER_NAME for rec in recommender.recommender_list],
            results_run_string))
        logFile.write("Algorithm: {}, results: \n{} time: {}".format(
            [rec.RECOMMENDER_NAME for rec in recommender.recommender_list],
            results_run_string, time.time()))
        logFile.flush()

        if not evaluate_algorithm:
            target_playlist = dataReader.get_target_playlist()
            md.assign_recomendations_to_correct_playlist(
                target_playlist, target_recommendations)
            md.make_CSV_file(target_playlist, filename)
            print('File {} created!'.format(filename))

    except Exception as e:
        traceback.print_exc()
        logFile.write("Algorithm: {} - Exception: {}\n".format(
            recommender_class, str(e)))
        logFile.flush()
    os.makedirs(output_root_path)

logFile = open(output_root_path + "Hybrid_GridSearch.txt", "a")

# -------------------------------
# metric to optimize
# -------------------------------

metric_to_optimize = "map"
map_list = []
best_dict = {
    "MAP": 0,
    "WEIGHTS": [0, 0, 0],
}
i = 0
for x in only_sum_equal_1:
    i += 1
    print("---- {} \%".format(i / len(only_sum_equal_1)))
    hybrid.fit(weights=x)
    res_dict = evaluator_test.evaluateRecommender(hybrid)
    map_list.append(res_dict[0][10]["MAP"])
    if res_dict[0][10]["MAP"] > best_dict["MAP"]:
        best_dict["MAP"] = res_dict[0][10]["MAP"]
        best_dict["WEIGHTS"] = x
        print("New best config : {}".format(best_dict))
        if (logFile != None):
            logFile.write("Best config: {}, Results {}\n".format(best_dict))
            logFile.flush()

print("Best config : {}".format(best_dict))
Exemple #8
0
from Base.Evaluation.Evaluator import SequentialEvaluator
from SLIM_BPR.Cython.SLIM_BPR_Cython import SLIM_BPR_Cython
from refactored_code.utils import load_random_urms, load_icm

if __name__ == '__main__':
    urm_train, urm_test = load_random_urms()
    icm = load_icm(0.7, 0.3, 0.5)
    slim = SLIM_BPR_Cython(urm_train, positive_threshold=0,
                           symmetric=True).fit(epochs=10,
                                               topK=300,
                                               batch_size=500,
                                               sgd_mode='adagrad',
                                               learning_rate=1e-4)
    evaluator_MF = SequentialEvaluator(urm_test, cutoff_list=[10])
    print(evaluator_MF.evaluateRecommender(slim))
Exemple #9
0
def run():
    evaluate_algorithm = False
    delete_old_computations = False
    slim_after_hybrid = False

    # delete_previous_intermediate_computations()
    # if not evaluate_algorithm:
    #     delete_previous_intermediate_computations()
    # else:
    #     print("ATTENTION: old intermediate computations kept, pay attention if running with all_train")
    # delete_previous_intermediate_computations()
    filename = "hybrid_ICB_ICF_UCF_SLIM_ELASTIC_local_08052.csv"

    dataReader = RS_Data_Loader(all_train=not evaluate_algorithm)

    URM_train = dataReader.get_URM_train()
    URM_PageRank_train = dataReader.get_page_rank_URM()
    URM_validation = dataReader.get_URM_validation()
    URM_test = dataReader.get_URM_test()
    ICM = dataReader.get_ICM()
    UCM_tfidf = dataReader.get_tfidf_artists()
    # _ = dataReader.get_tfidf_album()

    recommender_list1 = [
        # Random,
        # TopPop,
        ItemKNNCBFRecommender,
        # UserKNNCBRecommender,
        ItemKNNCFRecommender,
        UserKNNCFRecommender,
        # P3alphaRecommender,
        # RP3betaRecommender,
        # MatrixFactorization_BPR_Cython,
        # MatrixFactorization_FunkSVD_Cython,
        SLIM_BPR_Cython,
        # ItemKNNCFRecommenderFAKESLIM,
        # PureSVDRecommender,
        SLIMElasticNetRecommender
    ]

    # ITEM CB, ITEM CF, USER CF, RP3BETA, PURE SVD
    recommender_list2 = [
        # Random,
        # TopPop,
        ItemKNNCBFRecommender,
        # UserKNNCBRecommender,
        # ItemKNNCFPageRankRecommender,
        ItemKNNCFRecommender,
        UserKNNCFRecommender,
        # P3alphaRecommender,
        # RP3betaRecommender,
        # MatrixFactorization_BPR_Cython,
        # MatrixFactorization_FunkSVD_Cython,
        SLIM_BPR_Cython,
        SLIMElasticNetRecommender
        # PureSVDRecommender
    ]

    from Base.Evaluation.Evaluator import SequentialEvaluator

    evaluator = SequentialEvaluator(URM_test, URM_train, exclude_seen=True)

    output_root_path = "result_experiments/"

    # If directory does not exist, create
    if not os.path.exists(output_root_path):
        os.makedirs(output_root_path)

    logFile = open(output_root_path + "result_all_algorithms.txt", "a")

    try:
        recommender_class = HybridRecommender
        print("Algorithm: {}".format(recommender_class))

        '''
        Our optimal run
        '''
        recommender_list = recommender_list1  # + recommender_list2  # + recommender_list3

        onPop = False

        # On pop it used to choose if have dynamic weights for
        recommender = recommender_class(URM_train, ICM, recommender_list, URM_PageRank_train=URM_PageRank_train,
                                        dynamic=False, UCM_train=UCM_tfidf,
                                        URM_validation=URM_validation, onPop=onPop)

        lambda_i = 0.1
        lambda_j = 0.05
        old_similrity_matrix = None
        num_factors = 395
        l1_ratio = 1e-06

        # Variabili secondo intervallo
        alphaRP3_2 = 0.9223827655310622
        betaRP3_2 = 0.2213306613226453
        num_factors_2 = 391

        recommender.fit(**
                        {
                            "topK": [10, 33, 160, 761, 490],
                            "shrink": [8, 26, 2, -1, -1],
                            "pop": [280],
                            "weights": [0.33804686720093335, 1.3092081994688194, 0.642288869881126, 0.18883962446529368,
                                        1.9317211019160747],
                            "final_weights": [1, 1],
                            "force_compute_sim": False,  # not evaluate_algorithm,
                            "feature_weighting_index": 0,
                            "epochs": 150,
                            'lambda_i': [0.0], 'lambda_j': [1.0153577332223556e-08], 'SLIM_lr': [0.1],
                            'alphaP3': [0.4121720883248633],
                            'alphaRP3': [0.8582865731462926],
                            'betaRP': [0.2814208416833668],
                            'l1_ratio': 3.020408163265306e-06,
                            'alpha': 0.0014681984611695231,
                            'tfidf': [True],
                            "weights_to_dweights": -1,
                            "filter_top_pop_len": 0})

        print("TEST")

        print("Starting Evaluations...")
        # to indicate if plotting for lenght or for pop

        results_run, results_run_string, target_recommendations = evaluator.evaluateRecommender(recommender,
                                                                                                plot_stats=False,
                                                                                                onPop=onPop)

        print("Algorithm: {}, results: \n{}".format([rec.RECOMMENDER_NAME for rec in recommender.recommender_list],
                                                    results_run_string))
        logFile.write("Algorithm: {}, results: \n{} time: {}".format(
            [rec.RECOMMENDER_NAME for rec in recommender.recommender_list], results_run_string, time.time()))
        logFile.flush()

        if not evaluate_algorithm:
            target_playlist = dataReader.get_target_playlist()
            md.assign_recomendations_to_correct_playlist(target_playlist, target_recommendations)
            md.make_CSV_file(target_playlist, filename)
            print('File {} created!'.format(filename))


    except Exception as e:
        traceback.print_exc()
        logFile.write("Algorithm: {} - Exception: {}\n".format(recommender_class, str(e)))
        logFile.flush()
Exemple #10
0
    evaluator_validation, ICM_target=ICM, model_to_use="incremental")

# We compute the similarity matrix resulting from a RP3beta recommender
# Note that we have not included the code for parameter tuning, which should be done

cf_parameters = {
    'topK': 500,
    'alpha': 0.9,
    'beta': 0.7,
    'normalize_similarity': True
}

recommender_collaborative = RP3betaRecommender(URM_train)
recommender_collaborative.fit(**cf_parameters)

result_dict, result_string = evaluator_test.evaluateRecommender(
    recommender_collaborative)
print("CF recommendation quality is: {}".format(result_string))

# We get the similarity matrix
# The similarity is a scipy.sparse matrix of shape |items|x|items|
similarity_collaborative = recommender_collaborative.W_sparse.copy()

# We instance and fit the feature weighting algorithm, it takes as input:
# - The train URM
# - The ICM
# - The collaborative similarity matrix
# Note that we have not included the code for parameter tuning, which should be done as those are just default parameters

fw_parameters = {
    'epochs': 200,
    'learning_rate': 0.0001,
def run():
    evaluate_algorithm = True
    delete_old_computations = False
    slim_after_hybrid = False

    # delete_previous_intermediate_computations()
    # if not evaluate_algorithm:
    #     delete_previous_intermediate_computations()
    # else:
    #     print("ATTENTION: old intermediate computations kept, pay attention if running with all_train")
    # delete_previous_intermediate_computations()
    filename = "hybrid_ICB_ICF_UCF_SLIM_ELASTIC_local_08052.csv"

    dataReader = RS_Data_Loader(all_train=not evaluate_algorithm)

    URM_train = dataReader.get_URM_train()
    URM_PageRank_train = dataReader.get_page_rank_URM()
    URM_validation = dataReader.get_URM_validation()
    URM_test = dataReader.get_URM_test()
    ICM = dataReader.get_ICM()
    UCM_tfidf = dataReader.get_tfidf_artists()
    # _ = dataReader.get_tfidf_album()

    recommender_list1 = [
        # Random,
        # TopPop,
        ItemKNNCBFRecommender,
        # UserKNNCBRecommender,
        ItemKNNCFRecommender,
        UserKNNCFRecommender,
        # P3alphaRecommender,
        # RP3betaRecommender,
        # MatrixFactorization_BPR_Cython,
        # MatrixFactorization_FunkSVD_Cython,
        SLIM_BPR_Cython,
        # ItemKNNCFRecommenderFAKESLIM,
        # PureSVDRecommender,
        SLIMElasticNetRecommender
    ]

    # ITEM CB, ITEM CF, USER CF, RP3BETA, PURE SVD
    recommender_list2 = [
        # Random,
        # TopPop,
        ItemKNNCBFRecommender,
        # UserKNNCBRecommender,
        ItemKNNCFRecommender,
        UserKNNCFRecommender,
        # P3alphaRecommender,
        # RP3betaRecommender,
        # MatrixFactorization_BPR_Cython,
        # MatrixFactorization_FunkSVD_Cython,
        SLIM_BPR_Cython,
        # ItemKNNCFRecommenderFAKESLIM,
        # PureSVDRecommender,
        SLIMElasticNetRecommender
    ]

    from Base.Evaluation.Evaluator import SequentialEvaluator

    evaluator = SequentialEvaluator(URM_test, URM_train, exclude_seen=True)

    output_root_path = "result_experiments/"

    # If directory does not exist, create
    if not os.path.exists(output_root_path):
        os.makedirs(output_root_path)

    logFile = open(output_root_path + "result_all_algorithms.txt", "a")

    try:
        recommender_class = HybridRecommender
        print("Algorithm: {}".format(recommender_class))

        '''
        Our optimal run
        '''
        recommender_list = recommender_list1 + recommender_list2  # + recommender_list3

        d_weights = [
            [0.5469789514168496, 1.5598358421050373, 1.1505851198615593, 0.2540023047558251, 0.9403502151872645] + [
                0] * len(recommender_list2),
            [0] * len(recommender_list1) + [0.5205017325111618, 1.6831295912149837, 1.6560707664775454,
                                            0.3144197724407203, 1.9912784665282535]
        ]

        onPop = False

        # On pop it used to choose if have dynamic weights for
        recommender = recommender_class(URM_train, ICM, recommender_list, URM_PageRank_train=URM_PageRank_train,
                                        dynamic=True, UCM_train=UCM_tfidf, d_weights=d_weights,
                                        URM_validation=URM_validation, onPop=onPop)

        recommender.fit(**
                        {
                            "topK": [10, 33, 160, 761, 490] + [10, 33, 160, 761, 490],
                            "shrink": [8, 26, 2, -1, -1] + [8, 26, 2, -1, -1],
                            "pop": [30],
                            "weights": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
                            "final_weights": [1, 1],
                            "force_compute_sim": False,  # not evaluate_algorithm,
                            "feature_weighting_index": [0, 0],
                            "epochs": 150,
                            'lambda_i': [0.0, 0.0], 'lambda_j': [1.0153577332223556e-08, 1.0153577332223556e-08],
                            'SLIM_lr': [0.1, 0.1],
                            'alphaP3': [0.4121720883248633],
                            'alphaRP3': [0.8582865731462926],
                            'betaRP': [0.2814208416833668],
                            'l1_ratio': [3.020408163265306e-06, 3.020408163265306e-06],
                            'alpha': [0.0014681984611695231, 0.0014681984611695231],
                            'tfidf': [True, True],
                            "weights_to_dweights": -1,
                            "filter_top_pop_len": 0})

        print("TEST")

        print("Starting Evaluations...")
        # to indicate if plotting for lenght or for pop

        results_run, results_run_string, target_recommendations = evaluator.evaluateRecommender(recommender,
                                                                                                plot_stats=True,
                                                                                                onPop=onPop)

        print("Algorithm: {}, results: \n{}".format([rec.RECOMMENDER_NAME for rec in recommender.recommender_list],
                                                    results_run_string))
        logFile.write("Algorithm: {}, results: \n{} time: {} \n".format(
            [rec.RECOMMENDER_NAME for rec in recommender.recommender_list], results_run_string, time.time()))
        logFile.flush()

        if not evaluate_algorithm:
            target_playlist = dataReader.get_target_playlist()
            md.assign_recomendations_to_correct_playlist(target_playlist, target_recommendations)
            md.make_CSV_file(target_playlist, filename)
            print('File {} created!'.format(filename))


    except Exception as e:
        traceback.print_exc()
        logFile.write("Algorithm: {} - Exception: {}\n".format(recommender_class, str(e)))
        logFile.flush()