Exemple #1
0
    def validate(self, valid_iter, step=0):
        """ Validate model.
            valid_iter: validate data iterator
        Returns:
            :obj:`nmt.Statistics`: validation loss statistics
        """
        # Set model in validating mode.
        self.model.eval()
        stats = Statistics()

        with torch.no_grad():
            for batch in valid_iter:

                src = batch.src
                labels = batch.labels
                segs = batch.segs
                clss = batch.clss
                mask = batch.mask
                mask_cls = batch.mask_cls

                sent_scores, mask = self.model(src, segs, clss, mask, mask_cls)


                loss = self.loss(sent_scores, labels.float())
                loss = (loss * mask.float()).sum()
                batch_stats = Statistics(float(loss.cpu().data.numpy()), len(labels))
                stats.update(batch_stats)
            self._report_step(0, step, valid_stats=stats)
            return stats
Exemple #2
0
    def report_training(self,
                        step,
                        num_steps,
                        learning_rate,
                        report_stats,
                        multigpu=False):
        """
        This is the user-defined batch-level traing progress
        report function.

        Args:
            step(int): current step count.
            num_steps(int): total number of batches.
            learning_rate(float): current learning rate.
            report_stats(Statistics): old Statistics instance.
        Returns:
            report_stats(Statistics): updated Statistics instance.
        """
        if self.start_time < 0:
            raise ValueError("""ReportMgr needs to be started
                                (set 'start_time' or use 'start()'""")

        if step % self.report_every == 0:
            if multigpu:
                report_stats = \
                    Statistics.all_gather_stats(report_stats)
            self._report_training(step, num_steps, learning_rate, report_stats)
            self.progress_step += 1
            return Statistics()
        else:
            return report_stats
Exemple #3
0
    def _report_training(self, step, num_steps, learning_rate, report_stats):
        """
        See base class method `ReportMgrBase.report_training`.
        """
        report_stats.output(step, num_steps, learning_rate, self.start_time)

        # Log the progress using the number of batches on the x-axis.
        self.maybe_log_tensorboard(report_stats, "progress", learning_rate,
                                   self.progress_step)
        report_stats = Statistics()

        return report_stats
Exemple #4
0
    def _maybe_gather_stats(self, stat):
        """
        Gather statistics in multi-processes cases

        Args:
            stat(:obj:onmt.utils.Statistics): a Statistics object to gather
                or None (it returns None in this case)

        Returns:
            stat: the updated (or unchanged) stat object
        """
        if stat is not None and self.n_gpu > 1:
            return Statistics.all_gather_stats(stat)
        return stat
Exemple #5
0
    def _gradient_accumulation(self, true_batchs, normalization, total_stats,
                               report_stats):
        if self.grad_accum_count > 1:
            self.model.zero_grad()

        for batch in true_batchs:
            if self.grad_accum_count == 1:
                self.model.zero_grad()

            src = batch.src
            labels = batch.labels
            segs = batch.segs
            clss = batch.clss
            mask = batch.mask
            mask_cls = batch.mask_cls

            sent_scores, mask = self.model(src, segs, clss, mask, mask_cls)

            loss = self.loss(sent_scores, labels.float())
            loss = (loss*mask.float()).sum()
            (loss/loss.numel()).backward()
            # loss.div(float(normalization)).backward()

            batch_stats = Statistics(float(loss.cpu().data.numpy()), normalization)


            total_stats.update(batch_stats)
            report_stats.update(batch_stats)

            # 4. Update the parameters and statistics.
            if self.grad_accum_count == 1:
                # Multi GPU gradient gather
                if self.n_gpu > 1:
                    grads = [p.grad.data for p in self.model.parameters()
                             if p.requires_grad
                             and p.grad is not None]
                    distributed.all_reduce_and_rescale_tensors(
                        grads, float(1))
                self.optim.step()

        # in case of multi step gradient accumulation,
        # update only after accum batches
        if self.grad_accum_count > 1:
            if self.n_gpu > 1:
                grads = [p.grad.data for p in self.model.parameters()
                         if p.requires_grad
                         and p.grad is not None]
                distributed.all_reduce_and_rescale_tensors(
                    grads, float(1))
            self.optim.step()
Exemple #6
0
    def test(self, test_iter, step, cal_lead=False, cal_oracle=False):
        """ Validate model.
            valid_iter: validate data iterator
        Returns:
            :obj:`nmt.Statistics`: validation loss statistics
        """
        # Set model in validating mode.
        def _get_ngrams(n, text):
            ngram_set = set()
            text_length = len(text)
            max_index_ngram_start = text_length - n
            for i in range(max_index_ngram_start + 1):
                ngram_set.add(tuple(text[i:i + n]))
            return ngram_set

        def _block_tri(c, p):
            tri_c = _get_ngrams(3, c.split())
            for s in p:
                tri_s = _get_ngrams(3, s.split())
                if len(tri_c.intersection(tri_s))>0:
                    return True
            return False

        if (not cal_lead and not cal_oracle):
            self.model.eval()
        stats = Statistics()

        can_path = '%s_step%d.txt'%(self.args.result_path,step)
        gold_path = '%s_step%d.gold' % (self.args.result_path, step)
        with open(can_path, 'w') as save_pred:
            with open(gold_path, 'w') as save_gold:
                with torch.no_grad():
                    for batch in test_iter:
                        src = batch.src
                        labels = batch.labels
                        segs = batch.segs
                        clss = batch.clss
                        mask = batch.mask
                        mask_cls = batch.mask_cls


                        gold = []
                        pred = []

                        if (cal_lead):
                            selected_ids = [list(range(batch.clss.size(1)))] * batch.batch_size
                        elif (cal_oracle):
                            selected_ids = [[j for j in range(batch.clss.size(1)) if labels[i][j] == 1] for i in
                                            range(batch.batch_size)]
                        else:
                            sent_scores, mask = self.model(src, segs, clss, mask, mask_cls)

                            loss = self.loss(sent_scores, labels.float())
                            loss = (loss * mask.float()).sum()
                            batch_stats = Statistics(float(loss.cpu().data.numpy()), len(labels))
                            stats.update(batch_stats)

                            sent_scores = sent_scores + mask.float()
                            sent_scores = sent_scores.cpu().data.numpy()
                            selected_ids = np.argsort(-sent_scores, 1)
                        # selected_ids = np.sort(selected_ids,1)
                        for i, idx in enumerate(selected_ids):
                            _pred = []
                            if(len(batch.src_str[i])==0):
                                continue
                            for j in selected_ids[i][:len(batch.src_str[i])]:
                                if(j>=len( batch.src_str[i])):
                                    continue
                                candidate = batch.src_str[i][j].strip()
                                if(self.args.block_trigram):
                                    if(not _block_tri(candidate,_pred)):
                                        _pred.append(candidate)
                                else:
                                    _pred.append(candidate)

                                if ((not cal_oracle) and (not self.args.recall_eval) and len(_pred) == 3):
                                    break

                            _pred = '<q>'.join(_pred)
                            if(self.args.recall_eval):
                                _pred = ' '.join(_pred.split()[:len(batch.tgt_str[i].split())])

                            pred.append(_pred)
                            gold.append(batch.tgt_str[i])

                        for i in range(len(gold)):
                            save_gold.write(gold[i].strip()+'\n')
                        for i in range(len(pred)):
                            save_pred.write(pred[i].strip()+'\n')
        # if(step!=-1 and self.args.report_rouge):
        #     rouges = test_rouge(self.args.temp_dir, can_path, gold_path)
        #     logger.info('Rouges at step %d \n%s' % (step, rouge_results_to_str(rouges)))
        self._report_step(0, step, valid_stats=stats)

        return stats
Exemple #7
0
    def train(self, train_iter_fct, train_steps, valid_iter_fct=None, valid_steps=-1):
        """
        The main training loops.
        by iterating over training data (i.e. `train_iter_fct`)
        and running validation (i.e. iterating over `valid_iter_fct`

        Args:
            train_iter_fct(function): a function that returns the train
                iterator. e.g. something like
                train_iter_fct = lambda: generator(*args, **kwargs)
            valid_iter_fct(function): same as train_iter_fct, for valid data
            train_steps(int):
            valid_steps(int):
            save_checkpoint_steps(int):

        Return:
            None
        """
        logger.info('Start training...')

        # step =  self.optim._step + 1
        step =  self.optim._step + 1
        true_batchs = []
        accum = 0
        normalization = 0
        train_iter = train_iter_fct()

        total_stats = Statistics()
        report_stats = Statistics()
        self._start_report_manager(start_time=total_stats.start_time)

        while step <= train_steps:

            reduce_counter = 0
            for i, batch in enumerate(train_iter):
                if self.n_gpu == 0 or (i % self.n_gpu == self.gpu_rank):

                    true_batchs.append(batch)
                    normalization += batch.batch_size
                    accum += 1
                    if accum == self.grad_accum_count:
                        reduce_counter += 1
                        if self.n_gpu > 1:
                            normalization = sum(distributed
                                                .all_gather_list
                                                (normalization))

                        self._gradient_accumulation(
                            true_batchs, normalization, total_stats,
                            report_stats)

                        report_stats = self._maybe_report_training(
                            step, train_steps,
                            self.optim.learning_rate,
                            report_stats)

                        true_batchs = []
                        accum = 0
                        normalization = 0
                        if (step % self.save_checkpoint_steps == 0 and self.gpu_rank == 0):
                            self._save(step)

                        step += 1
                        if step > train_steps:
                            break
            train_iter = train_iter_fct()

        return total_stats