trainMidData = tf.placeholder(tf.float32, shape=(batch_siz,en_mid_siz,1), name="trainMidData") trainMidNorm = tf.placeholder(tf.float32, shape=(batch_siz), name="trainMidNorm") trainOutData = tf.placeholder(tf.float32, shape=(batch_siz,out_siz//2,1), name="trainOutData") trainOutNorm = tf.placeholder(tf.float32, shape=(batch_siz), name="trainOutNorm") global_steps=tf.Variable(0, trainable=False) #========================================================= #----- Training Preparation if de: en_butterfly_net = ButterflyLayer(N, in_siz, en_mid_siz, False, channel_siz, en_nlvl, -1, True, in_range, en_mid_range) else: en_butterfly_net = ButterflyLayer(2*N, in_siz, en_mid_siz, False, channel_siz, en_nlvl, -1, True, in_range, en_mid_range) middle_net = MiddleLayer(in_siz, en_mid_siz, de_mid_siz, sine = True, a = a[::(2**10//N)], prefixed = 2, std = 0.03) de_butterfly_net = ButterflyLayer(N, de_mid_siz, out_siz, False, channel_siz, de_nlvl, 1, True, de_mid_range, out_range) y_train_en_mid = en_butterfly_net(trainInData)
testMidNorm = tf.placeholder(tf.float32, shape=(test_siz), name="testMidNorm") testOutData = tf.placeholder(tf.float32, shape=(test_siz,out_siz//2,1), name="testOutData") testOutNorm = tf.placeholder(tf.float32, shape=(test_siz), name="testOutNorm") global_steps=tf.Variable(0, trainable=False) #========================================================= #----- Training Preparation middle_net = MiddleLayer(in_siz, en_mid_siz, de_mid_siz, False) if butterfly: en_butterfly_net = ButterflyLayer(N, in_siz, en_mid_siz, False, channel_siz, en_nlvl, -1, prefixed, in_range, en_mid_range,0.45) de_butterfly_net = ButterflyLayer(N, de_mid_siz, out_siz, False, channel_siz, de_nlvl, 1, prefixed, de_mid_range, out_range,0.45) y_train_en_mid = en_butterfly_net(trainInData) y_train_de_mid = middle_net(y_train_en_mid) train_output = de_butterfly_net(y_train_de_mid)/N x_train_output = train_output[:,::2] y_test_en_mid = en_butterfly_net(testInData) y_test_de_mid = middle_net(y_test_en_mid) test_output = de_butterfly_net(y_test_de_mid)/N x_test_output = test_output[:,::2] else: