def test_calculate_probability(self): model = LogisticRegression.train(xs, ys) q, p = LogisticRegression.calculate(model, [6,-173.143442352]) self.assertAlmostEqual(p, 0.993242, places=6) self.assertAlmostEqual(q, 0.006758, places=6) q, p = LogisticRegression.calculate(model, [309, -271.005880394]) self.assertAlmostEqual(p, 0.000321, places=6) self.assertAlmostEqual(q, 0.999679, places=6)
def test_calculate_probability(self): model = LogisticRegression.train(xs, ys) q, p = LogisticRegression.calculate(model, [6, -173.143442352]) self.assertAlmostEqual(p, 0.993242, 6) self.assertAlmostEqual(q, 0.006758, 6) q, p = LogisticRegression.calculate(model, [309, -271.005880394]) self.assertAlmostEqual(p, 0.000321, 6) self.assertAlmostEqual(q, 0.999679, 6)
def test_leave_one_out(self): correct = 0 predictions = [1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0] for i in range(len(predictions)): model = LogisticRegression.train(xs[:i] + xs[i + 1:], ys[:i] + ys[i + 1:]) prediction = LogisticRegression.classify(model, xs[i]) self.assertEqual(prediction, predictions[i]) if prediction == ys[i]: correct += 1 self.assertEqual(correct, 15)
def test_model_accuracy(self): correct = 0 model = LogisticRegression.train(xs, ys) predictions = [1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0] for i in range(len(predictions)): prediction = LogisticRegression.classify(model, xs[i]) self.assertEqual(prediction, predictions[i]) if prediction==ys[i]: correct+=1 self.assertEqual(correct, 16)
def test_model_accuracy(self): correct = 0 model = LogisticRegression.train(xs, ys) predictions = [1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0] for i in range(len(predictions)): prediction = LogisticRegression.classify(model, xs[i]) self.assertEqual(prediction, predictions[i]) if prediction == ys[i]: correct += 1 self.assertEqual(correct, 16)
def test_leave_one_out(self): correct = 0 predictions = [1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0] for i in range(len(predictions)): model = LogisticRegression.train(xs[:i]+xs[i+1:], ys[:i]+ys[i+1:]) prediction = LogisticRegression.classify(model, xs[i]) self.assertEqual(prediction, predictions[i]) if prediction==ys[i]: correct+=1 self.assertEqual(correct, 15)
def get(self): offset = int(self.get_argument('o',default='1')) rowcount = int(self.get_argument('r',default='10')) offset=(offset-1)*rowcount no = self.get_argument('no', default='') model_id = self.get_argument('model_id', default='') model_type = self.get_argument('model_type', default='') package=self.get_argument('model_name', default='') cur=self.db.getCursor() rowdata={} #查询 if no=='1': if model_type =='1': cur.execute(" select b.name,a.create_id,a.name,a.note,a.beta from public.logistis a " " left join public.account b on a.create_id = b.id " "where a.id='%s' "% (model_id) ) rows = cur.fetchall() print(rows) rowdata['struct']="id,create_id,name,note,beta " rowdata['rows']= rows else: cur.execute(" select b.name,a.create_id,a.name,a.note,c.name,a.file_name from public.pymodel a " " left join public.account b on a.create_id = b.id " " left join public.model c on a.type = c.type " " where a.id='%s' and a.type='%s' "% (model_id,model_type) ) rows = cur.fetchall() rowdata['struct']="id,create_id,name,note,type,filename " rowdata['rows']= rows self.response(rowdata) elif no=='2': if model_type=='1': beta = self.get_argument('beta', default='') model_data=self.get_argument('model', default='') a=[] q=0 print(model_data) a=(list(eval(model_data))) model=LogisticRegression.LogisticRegression() model.beta=(list(eval(beta))) rowdata={} rowdata['op']=LogisticRegression.calculate(model,a) rowdata['rows']=LogisticRegression.classify(model,a) elif model_type=='2': pack='data_mining.'+package import importlib bb=importlib.import_module(pack) ma=kNN.kNN() model=bb.model.knn(ma) model_data=self.get_argument('model', default='') a=[] a=(list(eval(model_data))) rowdata={} rowdata['op']=kNN.calculate(model,a) rowdata['rows']=kNN.classify(model,a) elif model_type=='3': pack='data_mining.'+package import importlib bb=importlib.import_module(pack) ma=NaiveBayes.NaiveBayes() model=bb.model.bayes(ma) model_data=self.get_argument('model', default='') a=[] a=(list(eval(model_data))) rowdata={} rowdata['op']=NaiveBayes.calculate(model,a) rowdata['rows']=NaiveBayes.classify(model,a) self.response(rowdata)
from Bio import LogisticRegression import numpy as np all_data = np.loadtxt("../datasets/iris/iris.data", delimiter=",", dtype="float, float, float, float, S11") xs = [] ys = [] for i in all_data: if 'virgi' not in str(i[-1]): xs.append([i[0], i[1], i[2], i[3]]) if 'setosa' in str(i[-1]): ys.append(0) else: ys.append(1) test_xs = xs.pop() test_ys = ys.pop() def show_progress(iteration, loglikelihood): print("Iteration:", iteration, "Log-likelihood function:", loglikelihood) model = LogisticRegression.train(xs, ys, update_fn=show_progress) print("This should be Iris-versic (1): {}".format(LogisticRegression.classify(model, test_xs)))
def test_classify(self): model = LogisticRegression.train(xs, ys) result = LogisticRegression.classify(model, [6, -173.143442352]) self.assertEqual(result, 1) result = LogisticRegression.classify(model, [309, -271.005880394]) self.assertEqual(result, 0)
def test_calculate_model(self): model = LogisticRegression.train(xs, ys) beta = model.beta self.assertAlmostEqual(beta[0], 8.9830, 4) self.assertAlmostEqual(beta[1], -0.0360, 4) self.assertAlmostEqual(beta[2], 0.0218, 4)
def post(self): alldata = self.getRequestData() user = self.objUserInfo s = Entity.model(self.db) print(alldata) if alldata['model_type'] == 1: xss = alldata['xs'].split() xs = [] ys = [] q = 0 for i in xss: xs.append([float(i.split(',')[0]), float(i.split(',')[1])]) for i in range(len(xs)): ys.append(int(alldata['ys'].split(',')[q])) q = q + 1 print(len(xs), len(ys)) model = LogisticRegression.train(xs, ys) if model.beta: lsData = { "create_id": user['id'], "name": alldata['name'], "beta": str(model.beta), "note": alldata['note'] } id = s.save(lsData, table='public.logistis') self.response(id) elif alldata['model_type'] == 2: xss = alldata['xs'].split() xs = [] ys = [] q = 0 for i in xss: xs.append([float(i.split(',')[0]), float(i.split(',')[1])]) for i in range(len(xs)): ys.append(int(alldata['ys'].split(',')[q])) q = q + 1 print(xs, ys) print(xs, ys) count = 1 while count >= 0: rpath = str(random.randint(10000, 90000)) pyfile = '/home/ubuntu/pythonff/mdt/mdt/mdtproject/trunk/service/data_mining/' + rpath + '.py' if not os.path.isfile(pyfile): count = -1 else: count = 1 f = open(pyfile, 'w') text = 'from Bio import kNN' + '\n' + 'class model():' + '\n' + ' def knn(self):' + '\n' + ' xs = ' + str( xs ) + '\n' + ' ys =' + str(ys) + '\n' + ' k=' + str( alldata['k'] ) + '\n' + ' model = kNN.train(xs,ys,k)' + '\n' + ' return model' print(text) f.write(text) f.close() if os.path.isfile(pyfile): lsData = { "create_id": user['id'], "name": alldata['name'], "file_name": rpath, "packpath": pyfile, "type": '2', "note": alldata['note'] } id = s.save(lsData, table='public.pymodel') self.response(id) elif alldata['model_type'] == 3: xss = alldata['xs'].split() xs = [] ys = [] q = 0 for i in xss: xs.append([float(i.split(',')[0]), float(i.split(',')[1])]) for i in range(len(xs)): ys.append(int(alldata['ys'].split(',')[q])) q = q + 1 print(xs, ys) count = 1 while count >= 0: rpath = str(random.randint(10000, 90000)) pyfile = '/home/ubuntu/pythonff/mdt/mdt/mdtproject/trunk/service/data_mining/' + rpath + '.py' if not os.path.isfile(pyfile): count = -1 else: count = 1 f = open(pyfile, 'w') text = 'from Bio import NaiveBayes' + '\n' + 'class model():' + '\n' + ' def bayes(self):' + '\n' + ' xs = ' + str( xs ) + '\n' + ' ys =' + str( ys ) + '\n' + ' model = NaiveBayes.train(xs,ys)' + '\n' + ' return model' print(text) f.write(text) f.close() if os.path.isfile(pyfile): lsData = { "create_id": user['id'], "name": alldata['name'], "file_name": rpath, "packpath": pyfile, "type": '3', "note": alldata['note'] } id = s.save(lsData, table='public.pymodel') self.response(id)
def get(self): offset = int(self.get_argument('o', default='1')) rowcount = int(self.get_argument('r', default='10')) offset = (offset - 1) * rowcount no = self.get_argument('no', default='') model_id = self.get_argument('model_id', default='') model_type = self.get_argument('model_type', default='') package = self.get_argument('model_name', default='') cur = self.db.getCursor() rowdata = {} #查询 if no == '1': if model_type == '1': cur.execute( " select b.name,a.create_id,a.name,a.note,a.beta from public.logistis a " " left join public.account b on a.create_id = b.id " "where a.id='%s' " % (model_id)) rows = cur.fetchall() print(rows) rowdata['struct'] = "id,create_id,name,note,beta " rowdata['rows'] = rows else: cur.execute( " select b.name,a.create_id,a.name,a.note,c.name,a.file_name from public.pymodel a " " left join public.account b on a.create_id = b.id " " left join public.model c on a.type = c.type " " where a.id='%s' and a.type='%s' " % (model_id, model_type)) rows = cur.fetchall() rowdata['struct'] = "id,create_id,name,note,type,filename " rowdata['rows'] = rows self.response(rowdata) elif no == '2': if model_type == '1': beta = self.get_argument('beta', default='') model_data = self.get_argument('model', default='') a = [] q = 0 print(model_data) a = (list(eval(model_data))) model = LogisticRegression.LogisticRegression() model.beta = (list(eval(beta))) rowdata = {} rowdata['op'] = LogisticRegression.calculate(model, a) rowdata['rows'] = LogisticRegression.classify(model, a) elif model_type == '2': pack = 'data_mining.' + package import importlib bb = importlib.import_module(pack) ma = kNN.kNN() model = bb.model.knn(ma) model_data = self.get_argument('model', default='') a = [] a = (list(eval(model_data))) rowdata = {} rowdata['op'] = kNN.calculate(model, a) rowdata['rows'] = kNN.classify(model, a) elif model_type == '3': pack = 'data_mining.' + package import importlib bb = importlib.import_module(pack) ma = NaiveBayes.NaiveBayes() model = bb.model.bayes(ma) model_data = self.get_argument('model', default='') a = [] a = (list(eval(model_data))) rowdata = {} rowdata['op'] = NaiveBayes.calculate(model, a) rowdata['rows'] = NaiveBayes.classify(model, a) self.response(rowdata)
def test_calculate_model_with_update_callback(self): model = LogisticRegression.train(xs, ys, update_fn=show_progress) beta = model.beta self.assertAlmostEqual(beta[0], 8.9830, places=4)
def post(self): alldata = self.getRequestData() user = self.objUserInfo s=Entity.model(self.db) print(alldata) if alldata['model_type']==1: xss=alldata['xs'].split() xs=[] ys=[] q=0 for i in xss: xs.append([float(i.split(',')[0]),float(i.split(',')[1])]) for i in range(len(xs)): ys.append(int(alldata['ys'].split(',')[q])) q=q+1 print(len(xs),len(ys)) model=LogisticRegression.train(xs,ys) if model.beta: lsData={ "create_id" : user['id'], "name" : alldata['name'], "beta" : str(model.beta), "note" : alldata['note'] } id = s.save(lsData,table='public.logistis') self.response(id) elif alldata['model_type']==2: xss=alldata['xs'].split() xs=[] ys=[] q=0 for i in xss: xs.append([float(i.split(',')[0]),float(i.split(',')[1])]) for i in range(len(xs)): ys.append(int(alldata['ys'].split(',')[q])) q=q+1 print(xs,ys) print(xs,ys) count=1 while count >= 0 : rpath = str(random.randint(10000, 90000)) pyfile='/home/ubuntu/pythonff/mdt/mdt/mdtproject/trunk/service/data_mining/'+rpath+'.py' if not os.path.isfile(pyfile): count=-1 else: count=1 f=open(pyfile,'w') text = 'from Bio import kNN'+'\n'+'class model():'+'\n'+' def knn(self):'+'\n'+' xs = '+str(xs)+'\n'+' ys ='+str(ys)+'\n'+' k='+str(alldata['k'])+'\n'+' model = kNN.train(xs,ys,k)'+'\n'+' return model' print(text) f.write(text) f.close() if os.path.isfile(pyfile): lsData={ "create_id" : user['id'], "name" : alldata['name'], "file_name" : rpath, "packpath" : pyfile, "type" : '2', "note" : alldata['note'] } id = s.save(lsData,table='public.pymodel') self.response(id) elif alldata['model_type']==3: xss=alldata['xs'].split() xs=[] ys=[] q=0 for i in xss: xs.append([float(i.split(',')[0]),float(i.split(',')[1])]) for i in range(len(xs)): ys.append(int(alldata['ys'].split(',')[q])) q=q+1 print(xs,ys) count=1 while count >= 0 : rpath = str(random.randint(10000, 90000)) pyfile='/home/ubuntu/pythonff/mdt/mdt/mdtproject/trunk/service/data_mining/'+rpath+'.py' if not os.path.isfile(pyfile): count=-1 else: count=1 f=open(pyfile,'w') text = 'from Bio import NaiveBayes'+'\n'+'class model():'+'\n'+' def bayes(self):'+'\n'+' xs = '+str(xs)+'\n'+' ys ='+str(ys)+'\n'+' model = NaiveBayes.train(xs,ys)'+'\n'+' return model' print(text) f.write(text) f.close() if os.path.isfile(pyfile): lsData={ "create_id" : user['id'], "name" : alldata['name'], "file_name" : rpath, "packpath" : pyfile, "type" : '3', "note" : alldata['note'] } id = s.save(lsData,table='public.pymodel') self.response(id)
def test_classify(self): model = LogisticRegression.train(xs, ys) result = LogisticRegression.classify(model, [6,-173.143442352]) self.assertEqual(result, 1) result = LogisticRegression.classify(model, [309, -271.005880394]) self.assertEqual(result, 0)
def test_calculate_model(self): model = LogisticRegression.train(xs, ys) beta = model.beta self.assertAlmostEqual(beta[0], 8.9830, places=4) self.assertAlmostEqual(beta[1], -0.0360, places=4) self.assertAlmostEqual(beta[2], 0.0218, places=4)