def test_car_data(self): """Simple example using car data.""" # Car data from example 'Naive Bayes Classifier example' # by Eric Meisner November 22, 2003 # http://www.inf.u-szeged.hu/~ormandi/teaching/mi2/02-naiveBayes-example.pdf xcar = [ ["Red", "Sports", "Domestic"], ["Red", "Sports", "Domestic"], ["Red", "Sports", "Domestic"], ["Yellow", "Sports", "Domestic"], ["Yellow", "Sports", "Imported"], ["Yellow", "SUV", "Imported"], ["Yellow", "SUV", "Imported"], ["Yellow", "SUV", "Domestic"], ["Red", "SUV", "Imported"], ["Red", "Sports", "Imported"], ] ycar = [ "Yes", "No", "Yes", "No", "Yes", "No", "Yes", "No", "No", "Yes", ] carmodel = NaiveBayes.train(xcar, ycar) self.assertEqual("Yes", NaiveBayes.classify(carmodel, ["Red", "Sports", "Domestic"])) self.assertEqual("No", NaiveBayes.classify(carmodel, ["Red", "SUV", "Domestic"]))
def test_car_data(self): """Simple example using car data.""" # Car data from example 'Naive Bayes Classifier example' # by Eric Meisner November 22, 2003 # http://www.inf.u-szeged.hu/~ormandi/teaching/mi2/02-naiveBayes-example.pdf xcar = [ ['Red', 'Sports', 'Domestic'], ['Red', 'Sports', 'Domestic'], ['Red', 'Sports', 'Domestic'], ['Yellow', 'Sports', 'Domestic'], ['Yellow', 'Sports', 'Imported'], ['Yellow', 'SUV', 'Imported'], ['Yellow', 'SUV', 'Imported'], ['Yellow', 'SUV', 'Domestic'], ['Red', 'SUV', 'Imported'], ['Red', 'Sports', 'Imported'], ] ycar = [ 'Yes', 'No', 'Yes', 'No', 'Yes', 'No', 'Yes', 'No', 'No', 'Yes', ] carmodel = NaiveBayes.train(xcar, ycar) self.assertEqual("Yes", NaiveBayes.classify(carmodel, ['Red', 'Sports', 'Domestic'])) self.assertEqual("No", NaiveBayes.classify(carmodel, ['Red', 'SUV', 'Domestic']))
def test_classify_function(self): expected = "female" result = NaiveBayes.classify(self.model, self.test) self.assertEqual(expected, result)
def get(self): offset = int(self.get_argument('o', default='1')) rowcount = int(self.get_argument('r', default='10')) offset = (offset - 1) * rowcount no = self.get_argument('no', default='') model_id = self.get_argument('model_id', default='') model_type = self.get_argument('model_type', default='') package = self.get_argument('model_name', default='') cur = self.db.getCursor() rowdata = {} #查询 if no == '1': if model_type == '1': cur.execute( " select b.name,a.create_id,a.name,a.note,a.beta from public.logistis a " " left join public.account b on a.create_id = b.id " "where a.id='%s' " % (model_id)) rows = cur.fetchall() print(rows) rowdata['struct'] = "id,create_id,name,note,beta " rowdata['rows'] = rows else: cur.execute( " select b.name,a.create_id,a.name,a.note,c.name,a.file_name from public.pymodel a " " left join public.account b on a.create_id = b.id " " left join public.model c on a.type = c.type " " where a.id='%s' and a.type='%s' " % (model_id, model_type)) rows = cur.fetchall() rowdata['struct'] = "id,create_id,name,note,type,filename " rowdata['rows'] = rows self.response(rowdata) elif no == '2': if model_type == '1': beta = self.get_argument('beta', default='') model_data = self.get_argument('model', default='') a = [] q = 0 print(model_data) a = (list(eval(model_data))) model = LogisticRegression.LogisticRegression() model.beta = (list(eval(beta))) rowdata = {} rowdata['op'] = LogisticRegression.calculate(model, a) rowdata['rows'] = LogisticRegression.classify(model, a) elif model_type == '2': pack = 'data_mining.' + package import importlib bb = importlib.import_module(pack) ma = kNN.kNN() model = bb.model.knn(ma) model_data = self.get_argument('model', default='') a = [] a = (list(eval(model_data))) rowdata = {} rowdata['op'] = kNN.calculate(model, a) rowdata['rows'] = kNN.classify(model, a) elif model_type == '3': pack = 'data_mining.' + package import importlib bb = importlib.import_module(pack) ma = NaiveBayes.NaiveBayes() model = bb.model.bayes(ma) model_data = self.get_argument('model', default='') a = [] a = (list(eval(model_data))) rowdata = {} rowdata['op'] = NaiveBayes.calculate(model, a) rowdata['rows'] = NaiveBayes.classify(model, a) self.response(rowdata)
def get(self): offset = int(self.get_argument('o',default='1')) rowcount = int(self.get_argument('r',default='10')) offset=(offset-1)*rowcount no = self.get_argument('no', default='') model_id = self.get_argument('model_id', default='') model_type = self.get_argument('model_type', default='') package=self.get_argument('model_name', default='') cur=self.db.getCursor() rowdata={} #查询 if no=='1': if model_type =='1': cur.execute(" select b.name,a.create_id,a.name,a.note,a.beta from public.logistis a " " left join public.account b on a.create_id = b.id " "where a.id='%s' "% (model_id) ) rows = cur.fetchall() print(rows) rowdata['struct']="id,create_id,name,note,beta " rowdata['rows']= rows else: cur.execute(" select b.name,a.create_id,a.name,a.note,c.name,a.file_name from public.pymodel a " " left join public.account b on a.create_id = b.id " " left join public.model c on a.type = c.type " " where a.id='%s' and a.type='%s' "% (model_id,model_type) ) rows = cur.fetchall() rowdata['struct']="id,create_id,name,note,type,filename " rowdata['rows']= rows self.response(rowdata) elif no=='2': if model_type=='1': beta = self.get_argument('beta', default='') model_data=self.get_argument('model', default='') a=[] q=0 print(model_data) a=(list(eval(model_data))) model=LogisticRegression.LogisticRegression() model.beta=(list(eval(beta))) rowdata={} rowdata['op']=LogisticRegression.calculate(model,a) rowdata['rows']=LogisticRegression.classify(model,a) elif model_type=='2': pack='data_mining.'+package import importlib bb=importlib.import_module(pack) ma=kNN.kNN() model=bb.model.knn(ma) model_data=self.get_argument('model', default='') a=[] a=(list(eval(model_data))) rowdata={} rowdata['op']=kNN.calculate(model,a) rowdata['rows']=kNN.classify(model,a) elif model_type=='3': pack='data_mining.'+package import importlib bb=importlib.import_module(pack) ma=NaiveBayes.NaiveBayes() model=bb.model.bayes(ma) model_data=self.get_argument('model', default='') a=[] a=(list(eval(model_data))) rowdata={} rowdata['op']=NaiveBayes.calculate(model,a) rowdata['rows']=NaiveBayes.classify(model,a) self.response(rowdata)