def __init__(self): self.img_channel = 2 self.gray_encoder = C3D_Test_ENCODER(input_channel=1,model_scope_name='gray_encoder', bn_tag = False) self.gray_encoder.encoder_channel_num = [64, 64, 64, 1] self.gray_encoder.encoder_stride_num = [[1, 1, 1],[1, 1, 1],[1, 1, 1],[1, 1, 1] ] self.gray_encoder.encoder_kernel_size = [[2, 3, 3],[2, 3, 3],[2, 3, 3],[2, 3, 3]] self.gray_decoder = C3D_DECODER(input_channel=1,model_scope_name='gray_decoder', bn_tag = False) self.gray_decoder.decoder_channel_num = [64, self.gray_decoder.input_channel] self.gray_decoder.decoder_stride_num = [[2, 2, 2],[2, 2, 2]] self.mid_model = Attention_Convert_Model( input_channel = 3,model_scope_name = 'net',s_size=4, attention_uints = 32, attention_hops = 16) self.batch_size = 1 self.video_imgs_num = 4 self.img_size_h = None self.img_size_w = None self.encoder_lr = 1e-3 self.decoder_lr = 1e-4 self.autoencoder_lr = 1e-3 self.selected_gpu_num = 0 self.build_model_adn_loss_opt() self.root_path = '/home/room304/TB/TB/TensorFlow_Saver/ANORMLY/Split/' self.optical_save_path = self.root_path + 'MODEL_OPTICAL/' self.gray_save_path = self.root_path + 'MODEL_GRAY/' self.mid_stage_save_path = self.root_path + 'MODEL_D/' self.summaries_dir = self.root_path + 'SUMMARY/' self.optical_img_save_path = self.root_path + 'RESULT/MODEL_OPTICAL/' self.gray_img_save_path = self.root_path + 'RESULT/MODEL_GRAY/' self.mid_stage_img_save_path = self.root_path + 'RESULT/MODEL_MID_STAGE/' self.full_datat_set_path = self.root_path + 'RESULT/Data_Set_UCSD_Path/' self.full_ucsd_datatset_path = self.root_path + 'RESULT/FULL_Data_Set/UCSD_Path/' self.full_shanghai_datatset_path = self.root_path + 'RESULT/FULL_Data_Set/Shanghai/' tmp_dir_list = [] tmp_dir_list.append(self.optical_save_path) tmp_dir_list.append(self.gray_save_path) tmp_dir_list.append(self.mid_stage_save_path) tmp_dir_list.append(self.summaries_dir) tmp_dir_list.append(self.optical_img_save_path) tmp_dir_list.append(self.gray_img_save_path) tmp_dir_list.append(self.mid_stage_img_save_path) tmp_dir_list.append(self.full_datat_set_path) tmp_dir_list.append(self.full_ucsd_datatset_path) tmp_dir_list.append(self.full_shanghai_datatset_path) mk_dirs(tmp_dir_list) return
def __init__(self): self.img_channel = 1 self.optical_encoder = C3D_ENCODER( input_channel=2, model_scope_name='optical_flow_encoder', bn_tag=False, relu_tag=True) self.optical_encoder.encoder_channel_num = [64, 16] self.optical_encoder.encoder_stride_num = [[2, 2, 2], [2, 2, 2]] self.optical_decoder = C3D_DECODER( input_channel=2, model_scope_name='optical_flow_decoder', bn_tag=False, relu_tag=True) self.optical_decoder.not_last_activation = True self.optical_decoder.decoder_channel_num = [ 64, self.optical_decoder.input_channel ] self.optical_decoder.decoder_stride_num = [[2, 2, 2], [2, 2, 2]] self.gray_encoder = C3D_ENCODER(input_channel=1, model_scope_name='gray_encoder', bn_tag=False, relu_tag=True) self.gray_encoder.encoder_channel_num = [64, 32] self.gray_encoder.encoder_stride_num = [[2, 2, 2], [2, 2, 2]] self.gray_decoder = C3D_DECODER(input_channel=1, model_scope_name='gray_decoder', bn_tag=False, relu_tag=True) self.gray_decoder.decoder_channel_num = [ 64, self.gray_decoder.input_channel ] self.gray_decoder.decoder_stride_num = [[2, 2, 2], [2, 2, 2]] self.mid_model = Attention_Model(input_channel=512, model_scope_name='vn4_concate_model', attention_uints=512, attention_hops=256) self.batch_size = 1 self.video_imgs_num = 4 self.img_size_h = 224 self.img_size_w = 224 self.encoder_lr = 1e-3 self.decoder_lr = 1e-4 self.autoencoder_lr = 1e-3 self.selected_gpu_num = 0 self.build_model_adn_loss_opt() self.root_path = '/home/room304/TB/TB/TensorFlow_Saver/ANORMLY/Attention_test_attention_without_pretrain/' self.optical_save_path = self.root_path + 'MODEL_OPTICAL/' self.gray_save_path = self.root_path + 'MODEL_GRAY/' self.mid_stage_save_path = self.root_path + 'MODEL_D/' self.summaries_dir = self.root_path + 'SUMMARY/' self.optical_img_save_path = self.root_path + 'RESULT/MODEL_OPTICAL/' self.gray_img_save_path = self.root_path + 'RESULT/MODEL_GRAY/' self.mid_stage_img_save_path = self.root_path + 'RESULT/MODEL_MID_STAGE/' self.full_datat_set_path = self.root_path + 'RESULT/Data_Set_UCSD_Path/' self.full_ucsd_datatset_path = self.root_path + 'RESULT/FULL_Data_Set/UCSD_Path/' self.full_shanghai_datatset_path = self.root_path + 'RESULT/FULL_Data_Set/Shanghai/' tmp_dir_list = [] tmp_dir_list.append(self.optical_save_path) tmp_dir_list.append(self.gray_save_path) tmp_dir_list.append(self.mid_stage_save_path) tmp_dir_list.append(self.summaries_dir) tmp_dir_list.append(self.optical_img_save_path) tmp_dir_list.append(self.gray_img_save_path) tmp_dir_list.append(self.mid_stage_img_save_path) tmp_dir_list.append(self.full_datat_set_path) tmp_dir_list.append(self.full_ucsd_datatset_path) tmp_dir_list.append(self.full_shanghai_datatset_path) mk_dirs(tmp_dir_list) return
def __init__(self): self.img_channel = 2 self.gray_encoder = C3D_ENCODER(input_channel=1, model_scope_name='gray_encoder', bn_tag=False) self.gray_encoder.encoder_channel_num = [32, 64] self.gray_encoder.encoder_stride_num = [[2, 2, 2], [2, 2, 2]] self.gray_decoder = C3D_DECODER(input_channel=1, model_scope_name='gray_decoder', bn_tag=False) self.gray_decoder.decoder_channel_num = [ 32, self.gray_decoder.input_channel ] self.gray_decoder.decoder_stride_num = [[2, 2, 2], [2, 2, 2]] self.discriminator_model = gan_model(input_channel=3, model_scope_name='discriminator', s_size=4, xt_num=64, attention_uints=512, attention_hops=256, bn_tag=False, attention_tag=False, dense_tag=False, not_last_activation=True) self.discriminator_model.encoder_channel_num = [32, 32, 32] self.discriminator_model.encoder_stride_num = [[1, 1], [1, 1], [1, 1]] self.batch_size = 2 self.video_imgs_num = 4 self.img_size_h = 256 self.img_size_w = 256 self.encoder_lr = 1e-3 self.decoder_lr = 1e-4 self.autoencoder_lr = 1e-3 self.selected_gpu_num = 0 self.build_model_adn_loss_opt() self.root_path = '/home/room304/TB/TB/TensorFlow_Saver/ANORMLY/GAN_T1/' self.optical_save_path = self.root_path + 'MODEL_OPTICAL/' self.gray_save_path = self.root_path + 'MODEL_GRAY/' self.discriminator_save_path = self.root_path + 'MODEL_DISCRIMINATOR/' self.mid_stage_save_path = self.root_path + 'MODEL_D/' self.summaries_dir = self.root_path + 'SUMMARY/' self.optical_img_save_path = self.root_path + 'RESULT/MODEL_OPTICAL/' self.gray_img_save_path = self.root_path + 'RESULT/MODEL_GRAY/' self.mid_stage_img_save_path = self.root_path + 'RESULT/MODEL_MID_STAGE/' self.full_datat_set_path = self.root_path + 'RESULT/Data_Set_UCSD_Path/' self.full_ucsd_datatset_path = self.root_path + 'RESULT/FULL_Data_Set/UCSD_Path/' self.full_shanghai_datatset_path = self.root_path + 'RESULT/FULL_Data_Set/Shanghai/' tmp_dir_list = [] tmp_dir_list.append(self.optical_save_path) tmp_dir_list.append(self.gray_save_path) tmp_dir_list.append(self.mid_stage_save_path) tmp_dir_list.append(self.summaries_dir) tmp_dir_list.append(self.optical_img_save_path) tmp_dir_list.append(self.gray_img_save_path) tmp_dir_list.append(self.mid_stage_img_save_path) tmp_dir_list.append(self.full_datat_set_path) tmp_dir_list.append(self.full_ucsd_datatset_path) tmp_dir_list.append(self.full_shanghai_datatset_path) mk_dirs(tmp_dir_list) return