if __name__ == '__main__': t_init_prog = time.clock() L = Lines() rbinini = 0. rbinfin = 3. rbinstep = 0.2 R_bin__r = np.arange(rbinini, rbinfin + rbinstep, rbinstep) R_bin_center__r = (R_bin__r[:-1] + R_bin__r[1:]) / 2.0 N_R_bins = len(R_bin_center__r) califaID = sys.argv[1] K = read_one_cube(califaID, EL=True, GP=True, config=-1) print '# califaID:', califaID, ' N_zones:', K.N_zone, ' lines:', K.EL.lines pa, ba = K.getEllipseParams() K.setGeometry(pa, ba) lines = K.EL.lines f_obs__lz = {} for i, l in enumerate(lines): mask = np.bitwise_or(~np.isfinite(K.EL.flux[i]), np.less(K.EL.flux[i], 1e-40)) f_obs__lz[l] = np.ma.masked_array(K.EL.flux[i], mask=mask) print l, f_obs__lz[l].max(), f_obs__lz[l].min(), f_obs__lz[l].mean() x_Y__z, integrated_x_Y = calc_xY(K, 3.2e7)
'figure.subplot.left': 0.04, 'figure.subplot.bottom': 0.04, 'figure.subplot.right': 0.97, 'figure.subplot.top': 0.95, 'figure.subplot.wspace': 0.1, 'figure.subplot.hspace': 0.25, 'image.cmap': cmap, } plt.rcParams.update(plotpars) # plt.ioff() figsize = (width, width * aspect) return plt.figure(fignum, figsize, dpi=dpi) if __name__ == '__main__': g = sys.argv[1] Kpix = read_one_cube(g, debug=True, EL=True, config=-1, elliptical=True) Kv20 = read_one_cube(g, debug=True, EL=True, config=-2, elliptical=True) iHa_pix = Kpix.EL.lines.index('6563') iHa_v20 = Kv20.EL.lines.index('6563') fHapixsum__z = np.zeros((Kv20.N_zone)) f6563__zpix_aux = Kpix.EL.flux[iHa_pix] mask = np.bitwise_or(~np.isfinite(f6563__zpix_aux), np.less(f6563__zpix_aux, 1e-40)) f6563__zpix = np.ma.masked_array(f6563__zpix_aux, mask=mask).filled(0.) for i in xrange(Kv20.N_y): for j in xrange(Kv20.N_x): if Kv20.qZones[i, j] >= 0: z_i = Kv20.qZones[i, j] z_i_pix = Kpix.qZones[i, j] fHapixsum__z[z_i] += f6563__zpix[z_i_pix] # f = plot_setup(latex_column_width, 1.)
if __name__ == '__main__': t_init_prog = time.clock() L = Lines() rbinini = 0. rbinfin = 3. rbinstep = 0.2 R_bin__r = np.arange(rbinini, rbinfin + rbinstep, rbinstep) R_bin_center__r = (R_bin__r[:-1] + R_bin__r[1:]) / 2.0 N_R_bins = len(R_bin_center__r) califaID = sys.argv[1] K = read_one_cube(califaID, EL=True, GP=True) print '# califaID:', califaID, ' N_zones:', K.N_zone, ' lines:', K.EL.lines pa, ba = K.getEllipseParams() K.setGeometry(pa, ba) lines = K.EL.lines f_obs__lz = {} for i, l in enumerate(lines): mask = np.bitwise_or(~np.isfinite(K.EL.flux[i]), np.less(K.EL.flux[i], 1e-40)) f_obs__lz[l] = np.ma.masked_array(K.EL.flux[i], mask=mask) print l, f_obs__lz[l].max(), f_obs__lz[l].min(), f_obs__lz[l].mean() x_Y__z, integrated_x_Y = calc_xY(K, 3.2e7)
if __name__ == '__main__': args = parser_args() print_args() imgDir = califa_work_dir + 'images/' Zsun = 0.019 H = H5SFRData(args.hdf5) tSF__T = H.tSF__T ageMyr = tSF__T[args.itSF] / 1e6 if (len(np.where(H.califaIDs == args.califaID)[0]) == 0): exit('<<< plot: %s: no data.' % args.califaID) K = read_one_cube(args.califaID, EL = True) pa, ba = K.getEllipseParams() K.setGeometry(pa, ba) f, axArr = plt.subplots(4, 4) f.set_size_inches(24, 20) for ax in f.axes: ax.set_axis_off() ax = axArr[0, 0] ax.set_axis_on() galaxyImgFile = imgDir + args.califaID + '.jpg' galimg = plt.imread(galaxyImgFile) plt.setp(ax.get_xticklabels(), visible = False) plt.setp(ax.get_yticklabels(), visible = False)
import numpy as np from scipy.optimize import minimize from CALIFAUtils.scripts import read_one_cube from matplotlib import pyplot as plt def gauss(p, x): A1, mu1, sigma1, A2, mu2, sigma2, A3, mu3, sigma3 = p g1 = A1 * np.exp(-(x - mu1)**2 / (2. * sigma1**2)) g2 = A2 * np.exp(-(x - mu2)**2 / (2. * sigma2**2)) g3 = A3 * np.exp(-(x - mu3)**2 / (2. * sigma3**2)) return g1 + g2 + g3 K = read_one_cube('K0010', debug=True, config=-2) N_zone = K.N_zone l_obs = np.copy(K.l_obs) f_obs__lz = np.copy(K.f_obs) f_syn__lz = np.copy(K.f_syn) v_0__z = np.copy(K.v_0) v_d__z = np.copy(K.v_d) K.close() del K zone = 0 f_obs__l = f_obs__lz[:, zone] f_syn__l = f_syn__lz[:, zone] f_res__l = f_obs__l - f_syn__l f_res__l *= 1e16 Hb_window = np.bitwise_and(np.greater(l_obs, 6563 - 70), np.less(l_obs, 6563 + 70)) to_min = lambda p: np.square(f_res__l[Hb_window] - gauss(p, l_obs[Hb_window])
if __name__ == '__main__': t_init_prog = time.clock() L = Lines() rbinini = 0. rbinfin = 3. rbinstep = 0.2 R_bin__r = np.arange(rbinini, rbinfin + rbinstep, rbinstep) R_bin_center__r = (R_bin__r[:-1] + R_bin__r[1:]) / 2.0 N_R_bins = len(R_bin_center__r) califaID = sys.argv[1] K = read_one_cube(califaID, EL=True, GP=True, elliptical=True, config=-2) print '# califaID:', califaID, ' N_zones:', K.N_zone, ' lines:', K.EL.lines lines = K.EL.lines print lines EWHa__yx = K.zoneToYX(K.EL.EW[K.EL.lines.index('6563')], extensive=False) distance_HLR__yx = K.pixelDistance__yx / K.pixelsPerHLR distance_HLR__r = R_bin_center__r # fluxes, SBs and cumulative SB f_obs__lz = {} f_obs__lyx = {} SB_obs__lyx = {} SB_obs_2__lyx = {}
def cmap_discrete(colors=[(1, 0, 0), (0, 1, 0), (0, 0, 1)], n_bins=3, cmap_name='myMap'): cm = mpl.colors.LinearSegmentedColormap.from_list(cmap_name, colors, N=n_bins) return cm if __name__ == '__main__': P = CALIFAPaths() califaID = sys.argv[1] kw_cube = dict(EL=EL, config=config, elliptical=elliptical) K = read_one_cube(califaID, **kw_cube) if K is None: print 'califaID:', califaID, ' trying another qVersion...' K = try_q055_instead_q054(califaID, **kw_cube) if K is None or K.EL is None: print sys.exit('califaID:%s missing fits files...' % califaID) lines = K.EL.lines maskSNR = K.EL._setMaskLineSNR('4861', minsnr=minSNR) maskSNR = np.bitwise_or(maskSNR, K.EL._setMaskLineSNR('6563', minsnr=minSNR)) f_obs__lz = {} f_obs__lyx = {} SB_obs__lyx = {}