def load_stage1_model(): net_stage1 = DnCNN(channels=12, out_ch=6, num_of_layers=opt.num_of_layers) if use_irregular: PATH = '{}/irregular_{}_net.pth'.format(opt.stage1_outf, opt.dataset) print('Loading from ', PATH) ckpt = torch.load(PATH, map_location='cpu') net_stage1.load_state_dict(ckpt) return net_stage1
def load_stage1_model(): # net_stage1 = DnCNN(channels=12, out_ch=6, num_of_layers=opt.num_of_layers) device_ids = [0] net_stage1 = DnCNN(channels=4, out_ch=2, num_of_layers=opt.num_of_layers) net_stage1 = nn.DataParallel(net_stage1, device_ids=device_ids).cuda() if use_irregular: PATH = '{}/irregular_{}_net.pth'.format(opt.stage1_outf, opt.dataset) print('Loading from ', PATH) ckpt = torch.load(PATH, map_location='cpu') net_stage1.load_state_dict(ckpt) return net_stage1
def load_stage1_model(): net_stage1 = DnCNN(channels=6, num_of_layers=opt.num_of_layers) if opt.dataset != 'olivetti': net_stage1 = net_stage1.cuda() if use_regular: PATH = '{}/regular_{}_net.pth'.format(opt.stage1_outf, opt.dataset) else: PATH = '{}/{}_net.pth'.format(opt.stage1_outf, opt.dataset) print('Loading from ', PATH) ckpt = torch.load(PATH, map_location='cpu') net_stage1.load_state_dict(ckpt) return net_stage1