cS   = np.sqrt(Te0/mi)
rhoS = cS/omCI

# From normalization of parallel current equation
factor = (omCI**2)*n0

# Obtain the suptitle
suptitle = fig.texts[0].get_text()

# Close the figure
plt.close(fig)
#}}}

# Make new ax to plot to
fig, (normalAx ,nnAx) = plt.subplots(ncols=2,\
                                    figsize = SizeMaker.array(2,1, aSingle=0.5))
size = "large"

#{{{Extract and plot nn
# Find the min and the max
maxmin = []
for line in oldNnAx.get_lines():
    x, y = line.get_data()
    x *= rhoS
    y *= factor
    maxmin.append((np.max(y), np.min(y)))
    nnAx.plot(x,y, color=line.get_color())

# Set the texts
maxInd = np.argmax(tuple(curVal[0] for curVal in maxmin))
minInd = np.argmin(tuple(curVal[1] for curVal in maxmin))
Exemple #2
0
mi = 39.948 * cst.u
e = cst.e

omCI = e * B0 / mi
cS = np.sqrt(Te0 / mi)
rhoS = cS / omCI

# From normalization of parallel current equation
factor = omCI * n0 * e * cS

# Obtain the suptitle
suptitle = fig.texts[0].get_text()

# Make new ax to plot to
fig, newAx = plt.subplots(figsize=SizeMaker.standard(w=4, a=0.5))

maxmin = []
for line in oldAx.get_lines():
    x, y = line.get_data()
    x *= rhoS
    y *= factor
    ny = len(x)
    maxmin.append((np.max(y), np.min(y)))
    newAx.plot(x, y, color=line.get_color())

# Set the texts
maxInd = np.argmax(tuple(curVal[0] for curVal in maxmin))
minInd = np.argmin(tuple(curVal[1] for curVal in maxmin))

boltzmann = oldAx.get_lines()[minInd]
Exemple #3
0
# Make segments
# +3 as we would like some space between the bars
lenKeys = len(keys) + 5
nBars = len(modes) * lenKeys
xBarVals = tuple(range(nBars))

data["Arithmetics"]["x"] = xBarVals[0::lenKeys]
data["Communication"]["x"] = xBarVals[1::lenKeys]
data["Input/output"]["x"] = xBarVals[2::lenKeys]
data["Laplace inversions"]["x"] = xBarVals[3::lenKeys]
data["Time solver"]["x"] = xBarVals[4::lenKeys]

tickVals = data["Input/output"]["x"]

# Create the figure
fig, ax = plt.subplots(figsize=SizeMaker.standard(a=0.5, s=0.5))

for key in keys:
    d = data[key]
    ax.bar(d["x"], d["mean"], yerr=d["std"], label=key)

PlotHelper.makePlotPretty(ax)
ax.xaxis.grid(False)
ax.xaxis.set_ticks(tickVals)
ax.xaxis.set_ticklabels(
    ("Initial\nphase", "Expand\nphase", "Linear\nphase", "Turbulent\nphase"))
ax.set_ylabel("$\%$")

# Move legend outside
handles, labels = ax.get_legend_handles_labels()
Exemple #4
0
    ax = fig.get_axes()[0]

    # Get the legends, and make keys out of these
    handles, labels = ax.get_legend_handles_labels()

    # Obtain the lines
    for nr, label in enumerate(labels):
        sD[scan][label] = ax.get_lines()[nr].get_data()[1]

    xAxis = ax.get_lines()[0].get_data()[0]

    plt.close(fig)

# Make a new figure
fig, (sAx, kAx) = plt.subplots(nrows=2, figsize = SizeMaker.standard(w=3, a=1.5),\
                               sharex=True)

for scan in scans:
    curScan = float(scan[4:])
    for key in sD[scan].keys():
        if "skew" in key.lower():
            sAx.plot(xAxis, sD[scan][key],\
                     ls     = sD[scan]["ls"],\
                     color  = sD[scan]["color"],\
                     marker = sD[scan]["marker"],\
                     ms     = 7,\
                     alpha  = 0.7,\
                     label  = "$B_0 = {} \mathrm{{T}}$".format(curScan)\
                     )
            sAx.set_ylabel(key.replace("Skewness", r"Skewness \;"))