def simulation(): # MPC Evaluation Period eval_period = 5 # Model Initiation model = MimoCstr(nsim=50, k0=8.2e10) # MPC Initiation mpc_init = ModelPredictiveControl(10, model.Nx, model.Nu, 0.1, 0.1, 0.1, model.xs, model.us) # MPC Construction mpc_control = mpc_init.get_mpc_controller(model.cstr_ode, eval_period, model.x0, random=False, verbosity=0) # Output Disturbance output_disturb = np.zeros(model.Nx) x_corrected = np.zeros([model.Nsim + 1, model.Nx]) """ Simulation portion """ for t in range(model.Nsim): """ Disturbance """ # if t == 10: # model.disturbance() """ MPC evaluation """ if t % eval_period == 0 and t != 0: # Solve the MPC optimization problem mpc_init.solve_mpc(model.x, model.u, model.xsp, mpc_control, t) if t != 0: output_disturb = model.xs - model.x[t, :] elif t < 5: model.u[t, :] = [300, 0.1] else: model.u[t, :] = model.u[t - 1, :] # Calculate the next stages model.x[t + 1, :] = model.next_state(model.x[t, :], model.u[t, :]) x_corrected[t + 1, :] = model.x[t + 1, :] + output_disturb print(model.cost_function(x_corrected)) return model, mpc_init, x_corrected
def simulation(): # Plant Model model_plant = MimoCstr(nsim=50) # Build Controller Model model_control = MimoCstr(nsim=model_plant.Nsim, nx=model_plant.Nx * 2, xs=np.array([0.878, 324.5, 0.659, 0, 0, 0]), x0=np.array([1, 310, 0.659, 0, 0, 0]), control=True) # MPC Object Initiation control = ModelPredictiveControl(model_control.Nsim, 10, model_control.Nx, model_control.Nu, 0.1, 0.1, 0.1, model_control.xs, model_control.us, dist=True) # MPC Construction mpc_control = control.get_mpc_controller(model_control.cstr_ode, control.eval_time, model_control.x0, random_guess=False) """ Simulation portion """ for t in range(model_plant.Nsim): # Solve the MPC optimization problem, obtain current input and predicted state model_control.u[t, :], model_control.x[t + 1, :] = control.solve_mpc( model_plant.x, model_plant.xsp, mpc_control, t, control.p) # Calculate the next states for the plant model_plant.x[t + 1, :] = model_plant.next_state( model_plant.x[t, :], model_control.u[t, :]) # Update the P parameters for offset-free control control.p = model_plant.x[t + 1, :] - model_control.x[t + 1, 0:3] print(model_plant.cost_function()) return model_plant, model_control, control