Exemple #1
0
    def update_probe_nonmodal(self, i, psi_old, psi_new):
        
        d1, d2 = self.positions.data
        id1, id2 = d1//1, d2//1
        object_intensity_max = (abs(self.object)**2.0).data[0].max()

        self.probe.modes[0] += \
            CXData.shift(conj(self.object[id1[i] - self.p2:id1[i] + self.p2, id2[i] - self.p2:id2[i] + self.p2]) *
             (psi_new-psi_old)[0] / object_intensity_max, d1[i]%1, d2[i]%1)

        self.probe.normalise()
Exemple #2
0
    def update_probe(self, i, psi_old, psi_new):
        
        d1, d2 = self.positions.data
        id1, id2 = d1//1, d2//1
        object_intensity_max = (abs(self.object)**2.0).data[0].max()

        for mode in range(len(self.probe)):
            self.probe.modes[mode] += \
                CXData.shift(conj(self.object[id1[i] - self.p2:id1[i] + self.p2, id2[i] - self.p2:id2[i] + self.p2]) *
                 (psi_new-psi_old)[mode] / object_intensity_max, d1[i]%1, d2[i]%1)

        self.probe.normalise()
        
        self.probe.orthogonalise()
Exemple #3
0
    def update_object(self, i, psi_old, psi_new):
        """
        Update the object from a single ptycho position.

        """
        then=time.time()
        d1, d2 = self.positions.data
        id1, id2 = d1//1, d2//1
        probe_intensity_max = CXModal.modal_sum(abs(self.probe)**2.0).data[0].max()
        
        self.object[id1[i] - self.p2:id1[i] + self.p2, id2[i] - self.p2:id2[i] + self.p2] += \
            CXData.shift(CXModal.modal_sum(conj(self.probe) * (psi_new-psi_old)) / probe_intensity_max, 
                d1[i]%1, d2[i]%1)

        if self.total_its==0 and sp.mod(i, len(self.positions.data[0]) / 10) == 0:
            self.update_figure(i)
Exemple #4
0
    def simulate_data(self):
        CXP.log.info('Simulating diffraction patterns.')
        self.sample = CXData()
        self.sample.load(CXP.io.simulation_sample_filename[0])
        self.sample.data[0] = self.sample.data[0].astype(float)
        self.sample.normalise(val=0.8)
        self.sample.data[0]+=0.2
        self.input_probe = CXModal()
        if len(CXP.io.simulation_sample_filename)>1:
            ph = CXData()
            ph.load(CXP.io.simulation_sample_filename[1])
            ph.data[0] = ph.data[0].astype(float)
            ph.normalise(val=np.pi/3)
            self.sample.data[0] = self.sample.data[0]*exp(complex(0., 1.)*ph.data[0])
        p = self.sample.data[0].shape[0]
        ham_window = sp.hamming(p)[:,np.newaxis]*sp.hamming(p)[np.newaxis,:]
        sample_large = CXData(data=sp.zeros((CXP.ob_p, CXP.ob_p), complex))
        sample_large.data[0][CXP.ob_p/2-p/2:CXP.ob_p/2+p/2, CXP.ob_p/2-p/2:CXP.ob_p/2+p/2] = self.sample.data[0]*ham_window

        ker = sp.arange(0, p)
        fwhm = p/3.0
        radker = sp.hypot(*sp.ogrid[-p/2:p/2,-p/2:p/2])
        gaussian = exp(-1.0*(fwhm/2.35)**-2. * radker**2.0 )
        ortho_modes = lambda n1, n2 : gaussian*np.sin(n1*math.pi*ker/p)[:,np.newaxis]*np.sin(n2*math.pi*ker/p)[np.newaxis, :]
        mode_generator = lambda : sp.floor(4*sp.random.random(2))+1

        used_modes = []
        self.input_psi = CXModal()
        
        for mode in range(CXP.reconstruction.probe_modes):
            if mode==0:
                new_mode = [1,1]
            else:
                new_mode = list(mode_generator())
                while new_mode in used_modes:
                    new_mode = list(mode_generator())
            used_modes.append(new_mode)
            CXP.log.info('Simulating mode {:d}: [{:d}, {:d}]'.format(mode, int(new_mode[0]), int(new_mode[1])))
            ph_func = gauss_smooth(np.random.random((p,p)), 10)
            self.input_probe.modes.append(CXData(name='probe{:d}'.format(mode), 
                data=ortho_modes(new_mode[0], new_mode[1])*exp(complex(0.,np.pi)*ph_func/ph_func.max())))
        
        self.input_probe.normalise()
        self.input_probe.orthogonalise()

        for mode in range(CXP.reconstruction.probe_modes):
            p2 = p/2
            x, y = self.positions.correct
            self.input_psi.modes.append(CXData(name='input_psi_mode{:d}'.format(mode), data=[]))
            
            for i in xrange(len(x)):
                if i%(len(x)/10)==0.:
                    CXP.log.info('Simulating diff patt {:d}'.format(i))
                tmp = (CXData.shift(sample_large, -1.0*(x[i]-CXP.ob_p/2), -1.0*(y[i]-CXP.ob_p/2))
                        [CXP.ob_p/2-p2:CXP.ob_p/2+p2, CXP.ob_p/2-p2:CXP.ob_p/2+p2]*
                        self.input_probe[mode][0])
                self.input_psi[mode].data.append(tmp.data[0])

        # Add modes incoherently
        self.det_mod = CXModal.modal_sum(abs(fft2(self.input_psi)))
        self.det_mod.save(path=CXP.io.base_dir+'/'+CXP.io.scan_id+'/raw_data/{:s}.npy'.format('det_mod'))