Exemple #1
0
def evaluate():
    gt_e, adv_e, nl_e = get_batch(batch_size=BATCH_SIZE,
                                  noise_levels=EVAL_NOISE_LEVELS,
                                  methods=EVAL_METHODS,
                                  data_dict=EVAL_DICT,
                                  eval_data=True)
    gt_t, adv_t, nl_t = get_batch(batch_size=BATCH_SIZE,
                                  noise_levels=TRAIN_NOISE_LEVELS,
                                  methods=TRAIN_METHODS,
                                  data_dict=TRAIN_DICT,
                                  eval_data=False)
    #    noise_lvl_e = int(nl_e) / 100
    #    noise_lvl_t = int(nl_t) / 100
    denoiser.test(groundTruth=gt_e, noisy=adv_e,
                  writer='test')  #, noise_lvl=noise_lvl_e)
    denoiser.test(groundTruth=gt_t, noisy=adv_t,
                  writer='train')  #, noise_lvl=noise_lvl_t)
Exemple #2
0
def train(steps):
    for k in range(steps):
        gt, adv = get_batch(eval_data=False)
        regularizer.train(groundTruth=gt,
                          adversarial=adv,
                          learning_rate=LEARNING_RATE)
        if k % 50 == 0:
            evaluate()
    regularizer.save()
def train(steps):
    for k in range(steps):
        gt, adv = get_batch(batch_size=BATCH_SIZE,
                            noise_levels=TRAIN_NOISE_LEVELS,
                            methods=TRAIN_METHODS, data_dict=TRAIN_DICT)
        regularizer.train(groundTruth=gt, adversarial=adv,
                          learning_rate=LEARNING_RATE)
        if k % 50 == 0:
            evaluate()
    regularizer.save()
Exemple #4
0
def train(steps):
    for k in range(steps):
        gt, adv, nl = get_batch(batch_size=BATCH_SIZE,
                            noise_levels=TRAIN_NOISE_LEVELS,
                            methods=TRAIN_METHODS, data_dict=TRAIN_DICT,
                            eval_data=False)
        rot_id = random.randint(0, 24)

        assert BATCH_SIZE == 1
        gt = gt.squeeze()
        adv = adv.squeeze()
        gt = grid_rot90(gt, rot_id)
        adv = grid_rot90(gt, rot_id)
#        noise_lvl = int(nl) / 100
        regularizer.train(groundTruth=gt, adversarial=adv,
                          learning_rate=LEARNING_RATE)#,
#                          noise_lvl=noise_lvl)
        if k % 50 == 0:
            evaluate()
    regularizer.save()
Exemple #5
0
def evaluate():
    gt, adv = get_batch(eval_data=True,
                        noise_levels=['01', '016'],
                        methods=['EM', 'SGD'])
    regularizer.test(groundTruth=gt, adversarial=adv)
Exemple #6
0
def evaluate():
    gt, adv, nl = get_batch(batch_size=BATCH_SIZE, noise_levels=EVAL_NOISE_LEVELS,
                        methods=EVAL_METHODS, data_dict=EVAL_DICT,
                        eval_data=True)
#    noise_lvl = int(nl) / 100
    regularizer.test(groundTruth=gt, adversarial=adv)#, noise_lvl=noise_lvl)
def evaluate():
    gt, adv = get_batch(batch_size=BATCH_SIZE, noise_levels=EVAL_NOISE_LEVELS,
                        methods=EVAL_METHODS, data_dict=EVAL_DICT)
    regularizer.test(groundTruth=gt, adversarial=adv)