def Test(): print("Open your Palm Wide...") time.sleep(5) ret, frame = cap.read() frame = cv2.flip(frame, 1) img = removeBG(frame) img = img[0:250, 0:250] gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) blur = cv2.GaussianBlur(gray, (blurValue, blurValue), 0) cv2.imwrite("predict.jpg", blur) result = classify("predict.jpg") print("Close your Palm...") time.sleep(5) ret, frame = cap.read() frame = cv2.flip(frame, 1) img = removeBG(frame) img = img[0:250, 0:250] gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) blur = cv2.GaussianBlur(gray, (blurValue, blurValue), 0) cv2.imwrite("predict.jpg", blur) result2 = classify("predict.jpg") if result == 'open': print("Feedback: Good Job! Your hand was fully opened!") elif result == 'nothing': print("Feedback: Please place your hand in the blue rectangle!") else: print("Feedback: Your hand was not fully opened.") if result2 == 'close': print("Feedback: Good Job! Your hand is fully closed!") elif result2 == 'nothing': print("Feedback: Please place your hand in the blue rectangle!") else: print("Feedback: Your hand was not fully closed.")
def implementation(self): number_of_clusters = len(self.clusters) level = 0 self.initialization() print("Running Agglomerative Hierarchical Clustering algorithm...") start = time.time() sleep(2.0) while len(self.clusters) != self.number_of_clusters: c = [] print("Level %d..." % level) for i, j in itertools.combinations(self.clusters, 2): distance = self.distance_of_clusters(self.clusters[i], self.clusters[j]) c.append([distance, i, j]) min_distance = min(c, key=lambda c: c[0]) #print(min_distance) self.merge_clusters(min_distance[1], min_distance[2]) level += 1 end = time.time() execution_time = self.compute_execution_time(start, end) classification = classify(self.clusters, self.number_of_data) classes = classification.classification() metrics = Evaluation_Metrics(classes, self.number_of_data) purity = metrics.Purity() totalF_measure = metrics.TotalF_measure() information = Information(purity, totalF_measure, execution_time, "Agglomerative_Hierarchical_Clustering") information.print_information()
def callback(i): global ans try: print(f"Classifying (predict/predict_{i}.jpg)") start_time = time.time() ans.append(classify(f"predict/predict_{i}.jpg")) print("Time:", time.time() - start_time) # print time taken except Exception as e: print(e)
def implementation(self): results = list( ) #contain 10 dict of final clusterizations after 10 times run of kmeans algorithm for i in range( self.iterations ): #run the kmeans 10 times with different centers each time centers = self.choose_centers() #print(centers) sleep(6.0) print("Running the K-Means algorithm %dth time" % (i + 1)) start = time.time() while True: clusters = dict() for cluster in range(self.k): clusters[cluster] = list() for data in self.dataset: distances = [ self.euclidean_distance(data, centers[center], len(data) - 1) for center in centers ] clusters[distances.index(min(distances))].append(data) previus_centers = dict(centers) for cluster in clusters: centers[cluster] = np.average(clusters[cluster], axis=0) sleep(5.0) if (self.algorithm_converged(previus_centers, centers)): results.append(clusters) break #print(clusters) end = time.time() execution_time = self.compute_execution_time(start, end) classification = classify(clusters, len(self.dataset)) classes = classification.classification() metrics = Evaluation_Metrics(classes, len(self.dataset)) purity = metrics.Purity() totalF_measure = metrics.TotalF_measure() information = Information(purity, totalF_measure, execution_time, self.alg) information.print_information()
def TestV2(): global space sleep(3) allowance = 3 iris_detect = eyeris_detector max_score = 2 * repSlider.get() score = 0 for i in range(repSlider.get()): text.insert(END, text_lst[4] + str(round(d["Time"][-1], 1)) + "\n") if cSpaceVar.get(): text.insert(END, text_lst[5]) LookImage2.config(image=imgLook) LookImage.config(image=transImage) soundRight = pyglet.media.load('Right Iris.wav', streaming=True) # play audio soundRight.play() while True: # check if user pressed space sleep(0.1) if space: if cSpaceVar.get(): text.insert(END, text_lst[6]) else: sleep(3) space = False break eye_cascade = cv2.CascadeClassifier( 'haar/haarcascade_eye_tree_eyeglasses.xml') # load haar cascade eyes = eye_cascade.detectMultiScale(eyeris_detector.frame, 1.3, 5) # detect eyes with haar cascade while len(eyes) < 2: eyes = eye_cascade.detectMultiScale( cv2.cvtColor(eyeris_detector.frame, cv2.COLOR_BGR2GRAY), 1.3, 5) # detect eyes with haar cascade for i in range(2): (x, y, w, h) = eyes[i] roi = eyeris_detector.frame[y:y + w, x:x + h] # get region of interest if i == 1: cv2.imwrite( "left.jpg", cv2.cvtColor(cv2.resize(roi, (400, 400)), cv2.COLOR_BGR2GRAY)) # write the images else: cv2.imwrite( "right.jpg", cv2.cvtColor(cv2.resize(roi, (400, 400)), cv2.COLOR_BGR2GRAY)) text.insert(END, text_lst[12]) soundDone = pyglet.media.load('ImageTaken.wav', streaming=True) # play audio soundDone.play() # calling the AI a = classify("left.jpg") if a != "normal": b = classify("right.jpg") if a != "normal" and b != "normal": text.insert(END, text_lst[8]) score += 1 else: text.insert(END, text_lst[9]) LookImage2.config(image=transImage) LookImage.config(image=imgLook) text.insert(END, text_lst[7] + str(round(d["Time"][-1], 1)) + "\n") if cSpaceVar.get(): text.insert(END, text_lst[5]) soundLeft = pyglet.media.load('Left Iris.wav', streaming=False) # play audio soundLeft.play() while True: # detect if user pressed space sleep(0.1) if space: if cSpaceVar.get(): text.insert(END, text_lst[6]) else: sleep(3) space = False break left_roi = CalLeft.update_roi() right_roi = CalRight.update_roi() cv2.imwrite("left.jpg", (cv2.resize(left_roi, (400, 400)))) cv2.imwrite("right.jpg", (cv2.resize(right_roi, (400, 400)))) text.insert(END, text_lst[12]) soundDone = pyglet.media.load('ImageTaken.wav', streaming=True) # play audio soundDone.play() a = classify("left.jpg") if a != "normal": b = classify("right.jpg") if a != "normal" and b != "normal": text.insert(END, text_lst[8]) score += 1 else: text.insert(END, text_lst[9]) # display score text.insert( END, f"Test Complete! You got {score} out of {max_score}\nTime: " + str(round(d["Time"][-1], 1)) + "\n") # display feedback if (score / max_score) * 1000 < 650: text.insert(END, text_lst[10]) else: text.insert(END, text_lst[11]) sound = pyglet.media.load('Test Complete.wav', streaming=False) # play audio sound.play() LookImage2.config(image=transImage) LookImage.config(image=transImage)
testing_set = train(labelled_features_file[:-4] + "2.txt", test_name, "ner") test(labelled_features_file[:-4] + "2.txt", test_name, "ner", testing_set) print("\n\n\n####################################\nNER") testing_set = train(labelled_features_file[:-4] + "3.txt", test_name, "ner") test(labelled_features_file[:-4] + "3.txt", test_name, "ner", testing_set) print("\n\n\n####################################\nNER") testing_set = train(labelled_features_file[:-4] + "4.txt", test_name, "ner") test(labelled_features_file[:-4] + "4.txt", test_name, "ner", testing_set) print("\n\n\n####################################\nNER") testing_set = train(labelled_features_file[:-4] + "5.txt", test_name, "ner") test(labelled_features_file[:-4] + "5.txt", test_name, "ner", testing_set) print("\n\n\n####################################\nNER") testing_set = train(labelled_features_file[:-4] + "6.txt", test_name, "ner") test(labelled_features_file[:-4] + "6.txt", test_name, "ner", testing_set) print("\n\n\n####################################\nNER") testing_set = train(labelled_features_file[:-4] + "7.txt", test_name, "ner") test(labelled_features_file[:-4] + "7.txt", test_name, "ner", testing_set) print("\n\n\n####################################\nNER") testing_set = train(labelled_features_file[:-4] + "8.txt", test_name, "ner") test(labelled_features_file[:-4] + "8.txt", test_name, "ner", testing_set) print("\n\n\n####################################\nRE") testing_set = train(labelled_features_file[:-4] + "_relationships.txt", test_name, "re") test(labelled_features_file[:-4] + "_relationships.txt", test_name, "re", testing_set) classify(test_name, "ner", input_text_file, "tests/" + test_name + "/testOutputNER.txt") classify(test_name, "re", "tests/" + test_name + "/testOutputNER.txt", "tests/" + test_name + "/testOutputRE.txt")
print '\n====== Augment data size ', AuX_train.shape , ' ======\n' print '\n====== Augment data size ', Auy_train.shape , ' ======\n' return save_path, X_train, y_train, X_valid, y_valid, AuX_train, Auy_train, aux, auy if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('--dt', help='datetime for the initialization of the experiment') parser.add_argument('--train', action='store_true') parser.add_argument('--test', help='test model') parser.add_argument('--modelclass', required=True, help='model class') # parser.add_argument('--th', help='threshold') args = parser.parse_args() print(args) if args.train: if args.dt: modelpath = train(args.modelclass, args.dt) else: dt = datetime.now() dt = dt.strftime('%Y%m%d_%H%M_%S%f') modelpath, X_train, y_train, X_valid, y_valid, AuX_train, Auy_train, aux, auy = train(args.modelclass, dt) classify(X_train, y_train, X_valid, y_valid, AuX_train, Auy_train, aux, auy)