def createExitModel(ModelName, gray=True, preprocessFunc=lambda x: x): FeatureName = "Wyjscie" TrainModeName = FeatureName + ModelName image_size_level = 5 base_scale = 1.0 cols, rows = moil.getColsRows(level=image_size_level, base_scale=base_scale) if (gray): mode = 0 channels_in = 1 color_mode = 'grayscale' else: mode = 1 channels_in = 3 color_mode = 'rgb' filters = 8 weights_path = "../../weights/unet" + TrainModeName var_filename = "../../weights/var" + TrainModeName + ".txt" Mod = md.Models(rows, cols, mode=mode, channels=channels_in, weights_path=weights_path, var_filename=var_filename, read_func=moil.read_and_size, preprocessFunc=preprocessFunc) Mod.get_model(filters=filters) Mod.load_weights() return Mod
width_shift_range=aug['width_shift_range'], height_shift_range=aug['height_shift_range'], zoom_range=aug['zoom_range'], shear_range=aug['shear_range'], rescale=aug['rescale'], fill_mode=aug['fill_mode']) train_generator = f.flow_from_directory_extension(directory=path, batch_size=batch_size, color_mode=color_mode, class_mode=class_mode, target_size=(rows, cols)) Mod = md.Models(rows, cols, mode=mode, channels=channels_in, show_function=show_function, read_func=read_function, validate_path_provider_func=validate_path_provider_func, validate_start_path=validate_start_path, weights_path=weights_path, var_filename=var_filename) # model creation model = Mod.get_model(filters=filters, le=learn_rate, decay=decay_rate) weights_loaded = False if load_weights: weights_loaded = Mod.load_weights() if not weights_loaded: Mod.save_weights() Mod.plot_loss(500) Mod.check_performance(train_generator, times=check_perf_times)