def feature_add(param, datasets): data1, data2, data3 = datasets plabel = data1[:, -2] tlabel = data1[:, -1] # dataset index data1 = data1[:, :-2] data2 = data2[:, :-2] data3 = data3[:, :-2] nb_class = int(max(tlabel)) + 1 nb_people = int(max(plabel)) + 1 unit_step = cc.get_unit_step(data1) cc.get_index_sampling(param, data1, step_index=unit_step)
def create_configuration_latency(param, file, nb_comb): df, step_index = cc.dataset_init(param, file) sampled = cc.get_index_sampling(param, df, step_index) resized = cc.resize_samples(param, sampled) combined = cc.combined_samples(resized, comb_degree=nb_comb) vectorized = cc.vectorized_samples(param, combined, nb_comb) return [file, vectorized]