Exemple #1
0
def SDiv_ABZS12(a, b, l, kappa):
    theta = int(ceil(log(l, 2)))
    x = b
    y = a
    for i in range(theta - 1):
        y = y * ((2**(l + 1)) - x)
        y = AdvInteger.TruncPr(y, 2 * l + 1, l, kappa)
        x = x * ((2**(l + 1)) - x)
        x = AdvInteger.TruncPr(x, 2 * l + 1, l, kappa)
    y = y * ((2**(l + 1)) - x)
    y = AdvInteger.TruncPr(y, 2 * l + 1, l, kappa)
    return y
Exemple #2
0
def SDiv_mono(a, b, l, kappa):
    theta = int(ceil(log(l / 3.5) / log(2)))
    alpha = two_power(2 * l)
    w = types.cint(int(2.9142 * two_power(l))) - 2 * b
    x = alpha - b * w
    y = a * w
    y = AdvInteger.TruncPr(y, 2 * l + 1, l + 1, kappa)
    for i in range(theta - 1):
        y = y * (alpha + x)
        # keep y with l bits
        y = AdvInteger.TruncPr(y, 3 * l, 2 * l, kappa)
        x = x**2
        # keep x with 2l bits
        x = AdvInteger.TruncPr(x, 4 * l, 2 * l, kappa)
    y = y * (alpha + x)
    y = AdvInteger.TruncPr(y, 3 * l, 2 * l, kappa)
    return y
Exemple #3
0
def Div(a, b, k, f, kappa, simplex_flag=False):
    theta = int(ceil(log(k / 3.5) / log(2)))
    alpha = AdvInteger.two_power(2 * f)
    w = AppRcr(b, k, f, kappa, simplex_flag)
    x = alpha - b * w

    y = a * w
    y = AdvInteger.TruncPr(y, 2 * k, f, kappa)

    for i in range(theta):
        y = y * (alpha + x)
        x = x * x
        y = AdvInteger.TruncPr(y, 2 * k, 2 * f, kappa)
        x = AdvInteger.TruncPr(x, 2 * k, 2 * f, kappa)

    y = y * (alpha + x)
    y = AdvInteger.TruncPr(y, 2 * k, 2 * f, kappa)
    return y
Exemple #4
0
def AppRcr(b, k, f, kappa, simplex_flag=False):
    """
        Approximate reciprocal of [b]:
        Given [b], compute [1/b]
    """
    alpha = types.cint(int(2.9142 * 2**k))
    c, v = Norm(b, k, f, kappa, simplex_flag)
    #v should be 2**{k - m} where m is the length of the bitwise repr of [b]
    d = alpha - 2 * c
    w = d * v
    w = AdvInteger.TruncPr(w, 2 * k, 2 * (k - f))
    # now w * 2 ^ {-f} should be an initial approximation of 1/b
    return w
Exemple #5
0
def SDiv(a, b, l, kappa):
    theta = int(ceil(log(l / 3.5) / log(2)))
    alpha = AdvInteger.two_power(2 * l)
    beta = 1 / types.cint(AdvInteger.two_power(l))
    w = types.cint(int(2.9142 * AdvInteger.two_power(l))) - 2 * b
    x = alpha - b * w
    y = a * w
    y = AdvInteger.TruncPr(y, 2 * l, l, kappa)
    x2 = types.sint()
    AdvInteger.Mod2m(x2, x, 2 * l + 1, l, kappa, False)
    x1 = (x - x2) * beta
    for i in range(theta - 1):
        y = y * (x1 + two_power(l)) + AdvInteger.TruncPr(
            y * x2, 2 * l, l, kappa)
        y = AdvInteger.TruncPr(y, 2 * l + 1, l + 1, kappa)
        x = x1 * x2 + AdvInteger.TruncPr(x2**2, 2 * l + 1, l + 1, kappa)
        x = x1 * x1 + AdvInteger.TruncPr(x, 2 * l + 1, l - 1, kappa)
        x2 = types.sint()
        AdvInteger.Mod2m(x2, x, 2 * l, l, kappa, False)
        x1 = (x - x2) * beta
    y = y * (x1 + two_power(l)) + AdvInteger.TruncPr(y * x2, 2 * l, l, kappa)
    y = AdvInteger.TruncPr(y, 2 * l + 1, l - 1, kappa)
    return y
Exemple #6
0
 def block(i):
     A[i] = AdvInteger.TruncPr(A[i - 1] * W[i - 1], 2 * k, f, kappa)
     temp = (B[i - 1] * W[i - 1]) >> f
     # no reading and writing to the same variable in a for loop.
     W[i] = two - temp
     B[i] = temp