Exemple #1
0
def demo_resort():
    path_data = 'data/test_text.txt'
    path_source = 'result/test_text.json'
    path_target = 'result/test_text-resort.json'
    from Config import config_predict
    import json
    config = config_predict()
    with open(path_data, 'r') as f:
        Data = f.read().strip().split('\n')
    with open(path_source, 'r') as f:
        S = json.load(f)
    D = []
    for i in range(len(Data)):
        prefix = Data[i]
        outputs = S[i]['result']
        s1 = [s[:-3] for s in outputs if '(文)' in s]
        s2 = [s[:-5] for s in outputs if '(大白狗)' in s]
        if len(s1) == 0:
            r1 = []
        else:
            r1 = resort(prefix, s1, config)
        if len(s2) == 0:
            r2 = []
        else:
            r2 = resort(prefix, s2, config)
        R = [r + '(文)' for r in r1]
        R += [r + '(大白狗)' for r in r2]
        d = {'input': prefix, 'outputs': R}
        D.append(d)
    with open(path_target, 'w') as f:
        json.dump(D, f, ensure_ascii=False, indent=4)
def main(path_source, path_config, idx0, idx1, gpu, nsamples):
    model, tokenizer, config, device = getModel(path_config=path_config, gpu=gpu)
    from Config import config_predict
    configpredict = config_predict()
    with open(path_source, 'r') as f:
        data = json.load(f)
    S0 = data[idx0:idx1]
    batch_size=100
    i0 = 0
    i1 = i0+batch_size
    while i0<len(S0):
        print('##########################%d-%d################'%(idx0+i0,idx0+min(i1,len(S0))))
        S = S0[i0:i1]
        fun(S, path_config, gpu, nsamples,model, tokenizer, config, device,configpredict)
        i0 = i1
        i1 = i1+batch_size
Exemple #3
0
import gpt_gen_thread
import sys
import time
import logging
import torch
from Config import config_predict
from datetime import datetime
import GPUtil
#from gevent.pywsgi import WSGIServer #关键这个
app = Flask(__name__)
app.logger.setLevel(logging.INFO)
port = 5000
style = 0#0大白狗, 1散文
if len(sys.argv)>1:
   port = int(sys.argv[1])
ConfigPredict = config_predict()
batchGenerating=ConfigPredict.batchGenerating
path_configs = ConfigPredict.model_configs
num0 = ConfigPredict.predict_nums
tags = ConfigPredict.tags
rmHFW = ConfigPredict.rmHFW
maxNext = ConfigPredict.maxNext_JLX
path_next = ConfigPredict.path_JLX_next
path_simi = ConfigPredict.path_JLX_simi
model,tokenizer,config,device,GPUs = [],[],[],[],[]
ModelIndex = []
for ii in range(len(path_configs)):
    M0,T0,C0,D0 = [],[],[],[]
    gpus = ConfigPredict.gpus[ii].split(',')
    idx = path_configs[ii].index('config_')+len('config_')
    key = path_configs[ii][idx:-5]
                                        num=num0[ii],
                                        removeHighFreqWords=rmHFW[ii],
                                        batchGenerating=batchGenerating)
            r0 = [rr + tags[ii] for rr in r0]
            result.extend(r0)
        d = {'input': data, 'outputs': result, 'num': len(result)}
        D.append(d)
        with open(path_target, 'w') as f:
            json.dump(D, f, ensure_ascii=False, indent=4)
    t1 = time.time()
    print('predict time is {} for parameter topk={}'.format(t1 - t0, topk))


if __name__ == '__main__':
    mode, path_config, data, path_target = sys.argv[1:5]
    if len(sys.argv) > 6:
        topk = int(sys.argv[5])
        temp = float(sys.argv[6])
    else:
        topk = 8
        temp = 1.0
    ConfigPredict = config_predict(path_config)
    batchGenerating = ConfigPredict.batchGenerating
    path_configs = ConfigPredict.model_configs
    num0 = ConfigPredict.predict_nums
    tags = ConfigPredict.tags
    rmHFW = ConfigPredict.rmHFW
    maxNext = ConfigPredict.maxNext_JLX
    path_next = ConfigPredict.path_JLX_next
    path_simi = ConfigPredict.path_JLX_simi
    main(data, mode, path_config, path_target, topk, temp)
Exemple #5
0
import gpt_gen
import gpt_gen_thread
import sys
from datetime import datetime
import time
import logging
from Config import config_predict

path_source = sys.argv[1]
path_target = sys.argv[2]
if len(sys.argv) > 3:
    path_config = sys.argv[3].split(',')
    doPredict = [int(t) for t in sys.argv[4].split(',')]
    gpus = sys.argv[5].split(',')
    ConfigPredict = config_predict(model_config=path_config,
                                   doPredict=doPredict,
                                   gpus=gpus)
    print('use input configs:%s' % '\n'.join(path_config))

else:
    print('use default configs')
    ConfigPredict = config_predict()
with open(path_source, 'r') as f:
    Data = f.read().strip().split('\n')
batchGenerating = ConfigPredict.batchGenerating
path_configs = ConfigPredict.model_configs
num0 = ConfigPredict.predict_nums
tags = ConfigPredict.tags
rmHFW = ConfigPredict.rmHFW
maxNext = ConfigPredict.maxNext_JLX
path_next = ConfigPredict.path_JLX_next
Exemple #6
0
import torch
import numpy as np
import gpt_gen
import gpt_gen_thread
import sys
from datetime import datetime
import time
import logging
from Config import config_predict

path_source = sys.argv[1]
path_target = sys.argv[2]
if len(sys.argv) > 3:
    path_config = sys.argv[3].split(',')
    doPredict = [int(t) for t in sys.argv[4].split(',')]
    ConfigPredict = config_predict(model_config=path_config,
                                   doPredict=doPredict)
    print('use input configs:%s' % '\n'.join(path_config))

else:
    print('use default configs')
    ConfigPredict = config_predict()
with open(path_source, 'r') as f:
    Data = f.read().strip().split('\n')
batchGenerating = ConfigPredict.batchGenerating
path_configs = ConfigPredict.model_configs
num0 = ConfigPredict.predict_nums
tags = ConfigPredict.tags
rmHFW = ConfigPredict.rmHFW
maxNext = ConfigPredict.maxNext_JLX
path_next = ConfigPredict.path_JLX_next
path_simi = ConfigPredict.path_JLX_simi