Exemple #1
0
    def test_camera_coor(self):
        point = [320, 240]
        while True:
            aligned_frames = self.get_aligned_frames()

            depth_frame = aligned_frames.get_depth_frame()
            color_frame = aligned_frames.get_color_frame()
            color_image = np.asanyarray(color_frame.get_data())

            cv2.circle(color_image, (point[0], point[1]), 3, [0, 0, 255])

            # Show images
            cv2.namedWindow('Color image', cv2.WINDOW_AUTOSIZE)
            cv2.imshow('Color image', color_image)

            coor = self.pixelxy2cameraXYZ(aligned_frames, point)
            print(coor)
            # depth = (depth_frame.get_distance(point[0], point[1])) * 100
            # print("depth=", depth)
            # print("delta depth=(cm)", depth - coor[2])

            key = cv2.waitKey(500)
            if key & 0xFF == ord('q') or key == 27:
                cv2.destroyAllWindows()
                Printer.print('Quit View', Printer.green)
                break
            elif key == ord('a'):
                point[0] -= 1
            elif key == ord('d'):
                point[0] += 1
            elif key == ord('s'):
                point[1] += 1
            elif key == ord('w'):
                point[1] -= 1
Exemple #2
0
	def rigid_transform_3D(A: np.array, B: np.array):
		""" B = RA + t """
		N = A.shape[0]
		
		# centroid_A, B
		centroid_A = np.mean(A, axis=0)
		centroid_B = np.mean(B, axis=0)
		
		centroid_A = centroid_A.reshape((1, 3))
		centroid_B = centroid_B.reshape((1, 3))
		
		AA = A - np.tile(centroid_A, (N, 1))
		BB = B - np.tile(centroid_B, (N, 1))
		
		H = np.matmul(AA.T, BB)
		
		U, S, V = np.linalg.svd(H)
		
		R = np.matmul(V.T, U.T)
		
		if np.linalg.det(R) < 0:
			Printer.print('Reflection Detected.', Printer.red)
			V[:, 2] *= -1
			R = np.matmul(V.T, U.T)
		
		t = centroid_B.T - np.matmul(R, centroid_A.T)
		
		return R, t
Exemple #3
0
    def view_aligned_filled_images(self):
        """简单查看对齐的RGB和深度图像的状态"""
        try:
            while True:
                align_frames = self.get_aligned_frames()
                color_frame = align_frames.get_color_frame()
                color_image = np.asanyarray(color_frame.get_data())

                depth_frame_pro = self._filter_depth_frame(
                    align_frames.get_depth_frame())
                depth_image_pro = np.asanyarray(depth_frame_pro.get_data())
                depth_colormap_pro = cv2.applyColorMap(
                    cv2.convertScaleAbs(depth_image_pro, alpha=0.03),
                    cv2.COLORMAP_JET)

                images = np.hstack((color_image, depth_colormap_pro))

                # Show images
                cv2.namedWindow('Color and aligned filled depth',
                                cv2.WINDOW_AUTOSIZE)
                cv2.imshow('Color and aligned filled depth', images)

                key = cv2.waitKey(1)
                if key & 0xFF == ord('q') or key == 27:
                    cv2.destroyAllWindows()
                    Printer.print('Quit View', Printer.green)
                    return

        except cv2.error as e:
            Printer.print('View aligned filled image error: %s' % e.__str__(),
                          Printer.red)
Exemple #4
0
    def load_control_point_files(self, path: str):
        self._cp_coor_dic.clear()
        self._cp_image_dic.clear()

        # 读坐标文件
        coor_filename = path + 'coors.txt'
        file = open(coor_filename)
        content_ls = file.readlines()

        for line in content_ls:
            if '' == line:  # 空行
                continue
            line.replace(' ', '')  # 空格

            try:
                pname, X, Y, Z = line.split(',')
                X = float(X)
                Y = float(Y)
                Z = float(Z)
                self._cp_coor_dic[pname] = np.asarray([X, Y, Z])

            except ValueError as e:
                Printer.print("Control point file ERROR." + e.__str__(),
                              Printer.red)

        # 读模板图片
        img_name_ls = glob.glob(path + '*.jpg')
        for img_name in img_name_ls:
            self._cp_image_dic[img_name[len(path):-4]] = cv2.imread(img_name)
        return
Exemple #5
0
    def get_transform_matrix(self,
                             aligned_frames,
                             sigma_threshold=10) -> np.array:
        self._found_point_XYZc_dic.clear()

        # 检测目标点位置
        image = self.get_color_image_from_frames(aligned_frames)

        point_xy_dic, display_img = self._find_markers(image)

        self.point_xy_dic = point_xy_dic  # TODO 测试用

        # 转成相机空间坐标
        for pname, xy in point_xy_dic.items():
            XYZ = self.pixelxy2cameraXYZ(aligned_frames, xy)

            if XYZ is not None:
                self._found_point_XYZc_dic[pname] = XYZ

        # 解转换参数
        # if self._solve_7_paras(sigma_threshold=sigma_threshold):
        # if self._solve_perspect_M():
        # if self._solve_para_4():
        if self._solve_shift():
            self.if_get_position_flag = True
            Printer.print('transform matrix get.', Printer.green)
        else:
            self.if_get_position_flag = False
        return display_img
Exemple #6
0
    def _update_found_points(self, found_points) -> bool:
        """
		添加匹配到的点坐标
		:param found_points: # [[点名: str, [Camera坐标X1, Y1, Z1], [Robot坐标X2, Y2, Z2]]]
		:return: 成功与否bool
		"""

        # [[点名: str, [Camera坐标x1, y1, z1], [Robot坐标x2, y2, z2]]]
        self._found_point_data.clear()

        def find_control(pname: str):
            for p in self.control_points:
                if p[0] == pname:
                    return p
            return None

        for p in found_points:
            if isinstance(p[0], str) and 3 == p[1].__len__():
                control_point = find_control(p[0])
                self._found_point_data.append(
                    [p[0], control_point[1],
                     np.asarray(p[1])])
            else:
                Printer.print("%s error: " % sys._getframe().f_code.co_name,
                              Printer.red)
                return False
        return True
Exemple #7
0
    def __init__(self):
        # 初始化窗口
        super().__init__()
        self.setupUi(self)

        # 定义线程
        self.mainThread = MainThread()
        self.monitor = MonitorThread(self.mainThread)

        # 绑定信号
        self.monitor.img_signal.connect(self._on_update_image_display)
        self.monitor.voice_ready_signal.connect(self._on_voice_ready)

        self.startButton.clicked.connect(self._on_start_button_clicked)
        self.buttonVoice.clicked.connect(self._on_voice_button_clicked)
        self.buttonCalibrate.clicked.connect(self._on_calibrate_button_clicked)
        self.exitButton.clicked.connect(self._on_exit_button_clicked)

        # 启动monitor
        self.monitor.start()

        self.buttonVoice.setEnabled(False)

        # self._on_start_button_clicked()
        self.show()
        Printer.print("Window ready", Printer.green)
Exemple #8
0
    def _on_start_button_clicked(self):
        print('start button clicked')
        self.startButton.setEnabled(False)

        self.mainThread.start()
        Printer.print('Main thread started.', Printer.green)

        self.startButton.setText('Started')

        self.buttonVoice.setEnabled(True)
        QApplication.processEvents()
Exemple #9
0
    def _solve_7_paras(self, sigma_threshold) -> bool:
        n_pt = self._found_point_XYZc_dic.__len__()
        n_equ = n_pt * 3  # 方程数

        if n_equ < 6:  # 点数不够
            # Printer.print("Control point not enough. Can't solve.", Printer.yellow)
            return False

        B = np.zeros((n_equ, 6), dtype=np.float)
        L = np.zeros((n_equ, 1), dtype=np.float)

        # 每个点对应三个方程
        i = 0
        for pname, XYZ1 in self._found_point_XYZc_dic.items():
            xyz2 = self._cp_coor_dic[pname]
            x1, y1, z1 = XYZ1
            x2, y2, z2 = xyz2

            B[3 * i, :] = [1, 0, 0, 0, -z1, y1]
            B[3 * i + 1, :] = [0, 1, 0, z1, 0, -x1]
            B[3 * i + 2, :] = [0, 0, 1, -y1, x1, 0]

            L[3 * i:3 * i + 3, 0] = [x2 - x1, y2 - y1, z2 - z1]

            i += 1

        # 解方程
        try:
            # B = B * -1
            NBB = np.matmul(B.transpose(), B)
            NBB_inv = np.linalg.inv(NBB)
            BTPL = np.matmul(B.transpose(), L)
            result = np.matmul(NBB_inv, BTPL)
            self.trans_para_7[:, 0] = result[:, 0]

            V = np.matmul(B, result) - L
            r = n_equ - 6
            VTV = np.matmul(V.transpose(), V)
            sigma = sqrt(VTV[0, 0] / r)
            print('sigma=', sigma)

            if sigma > sigma_threshold:
                Printer.print("sigma > %f" % sigma_threshold, Printer.yellow)
                return False
            else:
                return True
        except Exception as e:
            Printer.print('matrix error: ' + e.__str__(), Printer.red)
            return False
Exemple #10
0
 def _on_update_image_display(self, image):
     # print("update image")
     try:
         if isinstance(image, int):
             return
         w = self.imgLabel_r.width()
         h = self.imgLabel_r.height()
         print('w=%d, h=%h' % (w, h))
         cv2.resize(image, (w, h))
         bytesPerLine = 3 * w
         self.qImg = QImage(image.data, w, h, bytesPerLine,
                            QImage.Format_RGB888).rgbSwapped()
         # 将Qimage显示出来
         self.imgLabel_r.setPixmap(QPixmap.fromImage(self.qImg))
     except Exception as e:
         Printer.print('update image error: ' + e.__str__(), Printer.red)
Exemple #11
0
    def get_aligned_frames(self):
        """
        获取对齐的帧, 深度向颜色对齐, 失败返回None
		:return: 对齐后的帧(frames),获取失败返回None
		"""
        try:
            frames = self.pipeline.wait_for_frames()

            # 深度向颜色对齐
            align_frames = self.align.process(frames)

            return align_frames
        except cv2.error as e:
            Printer.print('Get aligned frames error: %s' % e.__str__(),
                          Printer.red)
            return None
Exemple #12
0
    def _solve_perspect_M(self) -> bool:
        if self.point_xy_dic.__len__() < 4:
            return False

        src_points = []
        dst_points = []
        for pname, xy in self.point_xy_dic.items():
            src_points.append(xy)
            dst_points.append(self._cp_coor_dic[pname][0:2])

        try:
            M = cv2.getPerspectiveTransform(src_points, dst_points)
            self.perspective_matrix = M
            return True
        except Exception as e:
            Printer.print('perspect M error: ', e.__str__, Printer.red)
            return False
    def _solve_7_paras(self) -> bool:
        n_pt = self._found_point_data.__len__()
        n_equ = n_pt * 3  # 方程数

        if n_equ < 6:  # 点数不够
            # Printer.print("Control point not enough. Can't solve.", Printer.yellow)
            return False

        B = np.zeros((n_equ, 6), dtype=np.float)
        L = np.zeros((n_equ, 1), dtype=np.float)

        # 每个点对应三个方程
        for i in range(n_pt):
            p_name, xyz1, xyz2 = self._found_point_data[i]
            x1, y1, z1 = xyz1
            x2, y2, z2 = xyz2

            B[3 * i, :] = [1, 0, 0, 0, -z1, y1]
            B[3 * i + 1, :] = [0, 1, 0, z1, 0, -x1]
            B[3 * i + 2, :] = [0, 0, 1, -y1, x1, 0]

            L[3 * i:3 * i + 3, 0] = [x2 - x1, y2 - y1, z2 - z1]

        # 解方程
        try:
            B = B * -1
            NBB = np.matmul(B.transpose(), B)
            NBB_inv = np.linalg.inv(NBB)
            BTPL = np.matmul(B.transpose(), L)
            result = np.matmul(NBB_inv, BTPL)
            self.trans_para[:, 0] = result[:, 0]

            V = np.matmul(B, result) - L
            r = n_equ - 6
            VTV = np.matmul(V.transpose(), V)
            sigma = sqrt(VTV[0, 0] / r)
            print('sigma=', sigma)
            if sigma > 0.1:
                Printer.print("sigma > 0.1", Printer.yellow)
                return False
            else:
                return True
        except Exception as e:
            Printer.print(e.__str__(), Printer.red)
            return False
Exemple #14
0
    def coor_trans(self, xyz1: np.array):
        """
		正向坐标变换
		:param xyz1: 相机坐标系的坐标xyz1
		:return: 返回转换后的np.array(xyz), 若转换失败返回None
		"""
        if not self.if_get_position:
            Printer.print("No camera position, Cannot trans coor.",
                          Printer.red)
            return None

        xyz1 = np.asarray(xyz1)
        if 3 != xyz1.size:
            Printer.print("coor trans error: xyz size wrong.", Printer.red)
            return None

        x1, y1, z1 = xyz1
        B = np.asarray([[1, 0, 0, 0, -z1, y1], [0, 1, 0, z1, 0, -x1],
                        [0, 0, 1, -y1, x1, 0]])
        xyz2 = np.matmul(B, self.trans_para).reshape(3) + xyz1
        return xyz2
Exemple #15
0
	def coor_trans_pixelxy2worldXYZ(self, aligned_frames: rs.frame, xy: np.array):
		if not self.if_get_position_flag:
			# Printer.print("No camera position, Cannot trans coor.", Printer.red)
			return None
		
		if len(xy) != 2:
			Printer.print('coor trans len(xy) != 2', Printer.red)
			return None
		
		# 七参数
		XYZ = self.pixelxy2cameraXYZ(aligned_frames, xy)
		if XYZ is None:
			return None
		
		XYZ = np.asarray(XYZ)
		XYZ = self._coor_trans_cameraXYZ2worldXYZ(XYZ)
		if 3 != XYZ.size:
			Printer.print("coor trans error: xyz size wrong.", Printer.red)
			return None
		
		return XYZ
Exemple #16
0
    def view_color_image(self):
        """简单查看一下RGB工作状态"""
        try:
            while True:
                frames = self.pipeline.wait_for_frames()

                color_frame = frames.get_color_frame()

                color_image = np.asanyarray(color_frame.get_data())

                # Show images
                cv2.namedWindow('Color image', cv2.WINDOW_AUTOSIZE)
                cv2.imshow('Color image', color_image)

                key = cv2.waitKey(1)
                if key & 0xFF == ord('q') or key == 27:
                    cv2.destroyAllWindows()
                    Printer.print('Quit View', Printer.green)
                    return
        except cv2.error as e:
            Printer.print('View color image error: %s' % e.__str__(),
                          Printer.red)
Exemple #17
0
    def load_control_point_file(self, filename=None):
        if filename:
            fname = filename
        else:
            fname = self.coor_filename

        self.control_points.clear()

        file = open(fname)
        content_ls = file.readlines()
        for line in content_ls:
            if '' == line:
                continue
            line.replace(' ', '')
            pname, x, y, z = line.split(',')
            try:
                x = float(x)
                y = float(y)
                z = float(z)
                self.control_points.append([pname, np.asarray([x, y, z])])
            except ValueError as e:
                Printer.print("control point file error.", Printer.red)
                return False
        return True
Exemple #18
0
    def __init__(self,
                 color_resolution=(1920, 1080),
                 depth_resolution=(1280, 720)):
        try:
            # TODO
            self.pipeline = rs.pipeline()
            self.config = rs.config()
            self.config.enable_stream(rs.stream.depth, depth_resolution[0],
                                      depth_resolution[1], rs.format.z16, 30)
            self.config.enable_stream(rs.stream.color, color_resolution[0],
                                      color_resolution[1], rs.format.bgr8, 30)

            # 配置文件
            self.profile = self.pipeline.start(self.config)

            # 深度传感器
            self.depth_sensor = self.profile.get_device().first_depth_sensor()
            self.depth_sensor.set_option(rs.option.visual_preset, 4)

            # 设备设置
            self.device = rs.context().query_devices()[0]
            self.advnced_mode = rs.rs400_advanced_mode(self.device)
            self.set_disparityShift(1000)
            self.set_depthUnits(100)

            # 深度标尺
            self.depth_scale = self.depth_sensor.get_depth_scale()
            print('depth_scale=', self.depth_scale)

            # 创建align对象
            self.align_to = rs.stream.color
            self.align = rs.align(self.align_to)

            Printer.print("Camera ready", Printer.green)
        except RuntimeError as e:
            Printer.print("Camera init fail: " + e.__str__(), Printer.red)
Exemple #19
0
    def pixelxy2cameraXYZ(self, align_frames, pixel_coor):
        """
		获取指定像素点[x, y](必须是List), 在相机坐标系下的三维坐标[X, Y, Z]
		:param align_frames: 对齐的帧
		:param pixel_coor: 目标像素的坐标, 只能传入list, 不能是array
		:return:
		"""

        pixel_coor = np.asarray(np.round(pixel_coor), dtype=np.int)

        # 获得对齐后的深度帧
        align_depth_frame = align_frames.get_depth_frame()
        color_frame = align_frames.get_color_frame()

        if not color_frame or not align_depth_frame:
            Printer.print('pixelxy2cameraXYZ error. no color_frame',
                          Printer.red)
            return None

        # 获得颜色帧的内参
        color_intrin = color_frame.profile.as_video_stream_profile().intrinsics

        align_depth_image = np.asanyarray(align_depth_frame.get_data())
        try:
            # 长度单位为cm, 图像寻址先行后列
            align_depth_value = align_depth_image[
                pixel_coor[1],
                pixel_coor[0]] * self.depth_scale * 100  # 单位转换,100为cm,1为m
            # 输入传感器内部参数、点的像素坐标、对应的深度值,输出点的三维坐标。
            XYZ = rs.rs2_deproject_pixel_to_point(color_intrin,
                                                  list(pixel_coor),
                                                  align_depth_value)
            # 判断结果是否异常
            if [0, 0, 0] == XYZ:
                Printer.print("Coor error, maybe too near", Printer.red)
                return None
            else:
                # 坐标系变换
                XYZ[2] *= -1
                temp = XYZ[0]
                XYZ[0] = XYZ[1]
                XYZ[1] = temp
                return XYZ
        except Exception as e:
            Printer.print('pixelxy2cameraXYZ error' + e.__str__(), Printer.red)
            return None
Exemple #20
0
 def _on_exit_button_clicked(self):
     self.mainThread.quit()  # 退出线程  TODO 改成MainThread的
     self.monitor.quit()
     self.close()  # 关闭窗口
     Printer.print("exit", Printer.green)
Exemple #21
0
 def __init__(self, control_point_path='control_point_data/'):
     super().__init__()
     self.load_control_point_files(control_point_path)
     Printer.print('control point files loaded.', Printer.green)
Exemple #22
0
    def _match_template_SIFT(self,
                             template_img,
                             target_kp,
                             target_des,
                             threshold,
                             draw_img=None,
                             min_match_count=25):
        """
		用SIFT进行模板匹配,如果找到了返回center,如果没找到返回None
		:param template_img:
		:param target_kp:
		:param target_des:
		:param threshold:
		:param draw_img:
		:param min_match_count:
		:return:
		"""
        # Initiate SIFT detector创建sift检测器
        sift = cv2.xfeatures2d.SIFT_create()

        # compute the descriptors with ORB
        template_kp, template_des = sift.detectAndCompute(template_img, None)

        # 创建设置FLANN匹配
        FLANN_INDEX_KDTREE = 0
        # 匹配算法
        index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
        # 搜索次数
        search_params = dict(checks=30)
        flann = cv2.FlannBasedMatcher(index_params, search_params)

        matches = flann.knnMatch(template_des, target_des, k=2)

        # store all the good matches as per Lowe's ratio test.
        good_match = []
        # 舍弃大于threshold的匹配, threshold越小越严格
        for m, n in matches:
            if m.distance < threshold * n.distance:
                good_match.append(m)

        if len(good_match) > min_match_count:
            Printer.print(
                "matches found - %d/%d" % (len(good_match), min_match_count),
                Printer.green)
            # 获取关键点的坐标
            src_pts = np.float32([
                template_kp[m.queryIdx].pt for m in good_match
            ]).reshape(-1, 1, 2)
            dst_pts = np.float32([
                target_kp[m.trainIdx].pt for m in good_match
            ]).reshape(-1, 1, 2)
            # 计算变换矩阵和MASK
            M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
            # matchesMask = mask.ravel().tolist()
            h, w = template_img.shape[:2]
            # 使用得到的变换矩阵对原图像的四个角进行变换,获得在目标图像上对应的坐标
            pts = np.float32([[0, 0], [0, h - 1], [w - 1, h - 1],
                              [w - 1, 0]]).reshape(-1, 1, 2)
            dst = cv2.perspectiveTransform(pts, M)
            center = np.asarray([
                np.round(np.mean(dst[:, 0, 0])),
                np.round(np.mean(dst[:, 0, 1]))
            ],
                                dtype=np.int)

            cv2.polylines(draw_img, [np.int32(dst)], True, [0, 0, 255], 2,
                          cv2.LINE_AA)
            cv2.circle(draw_img, (center[0], center[1]), 3, (0, 255, 0), 3)
        else:
            Printer.print(
                "matches found - %d/%d" % (len(good_match), min_match_count),
                Printer.yellow)
            center = None

        return center