Exemple #1
0
    def get_longest_pep_per_gene_from_ensembl_pep_dict(protein_dict, output_prefix=None):
        length_file = "%s.protein_length.tsv" % output_prefix
        if output_prefix:
            longest_protein_id_file = "%s.longest_pep.ids" % output_prefix

            len_fd = open(length_file, 'w')
            len_fd.write("#gene_id\tprotein_id\tprotein_length\n")

        data_dict = OrderedDict()
        for protein_id in protein_dict:
            length = len(protein_dict[protein_id].seq)
            description_list = protein_dict[protein_id].description.split()
            #print protein_dict[protein_id]
            #print ''
            #print description_list

            for entry in description_list:
                if "gene:" in entry:
                    gene_id = entry.split(":")[1]
            if output_prefix:
                len_fd.write("%s\t%s\t%i\n" % (gene_id, protein_id, length))
            if gene_id not in data_dict:
                data_dict[gene_id] = protein_id
            else:
                if length > len(protein_dict[data_dict[gene_id]].seq):
                    data_dict[gene_id] = protein_id

        longest_pep_ids = IdList(data_dict.values())
        if output_prefix:
            longest_pep_ids.write(longest_protein_id_file)
            len_fd.close()
        return longest_pep_ids
Exemple #2
0
    def calculate_fpkm_for_count_table(count_table_file, transcript_length_file, output_file,
                                       separator="\t"):
        length_dict = SynDict(filename=transcript_length_file, expression=int, comments_prefix="#")

        with open(count_table_file, "r") as in_fd:
            header_list = in_fd.readline().strip().split(separator)

            samples_list = header_list[1:]
            gene_list = IdList()
            count_list = []
            for line in in_fd:
                tmp = line.strip().split(separator)
                gene_list.append(tmp[0])
                count_list.append(map(float, tmp[1:]))

            per_sample_total_counts = []

            for sample_index in range(0, len(samples_list)):
                total_counts = 0
                for gene_index in range(0, len(count_list)):
                    total_counts += count_list[gene_index][sample_index]
                per_sample_total_counts.append(total_counts)

        with open(output_file, "w") as out_fd:
            out_fd.write(separator.join(header_list) + "\n")
            for gene_index in range(0, len(count_list)):
                normalized_counts_list = []
                for sample_index in range(0, len(samples_list)):
                    gene_count = count_list[gene_index][sample_index] * (10**9) / length_dict[gene_list[gene_index]] / per_sample_total_counts[sample_index]
                    normalized_counts_list.append(gene_count)
                out_fd.write("%s\t%s\n" % (gene_list[gene_index], "\t".join(map(str, normalized_counts_list))))
Exemple #3
0
    def extract_annotation_by_refence_id(list_of_target_gff, id_file,
                                         extracted_gff, filtered_out_gff):
        ids = IdList()
        ids.read(id_file)
        extracted_gff_fd = open(extracted_gff, "w")
        filtered_out_gff_fd = open(filtered_out_gff, "w")
        for filename in list_of_target_gff:
            with open(filename, "r") as in_fd:
                for line in in_fd:
                    tmp = line
                    if tmp == "# --- START OF GFF DUMP ---\n":
                        # read until string with target_name will appear
                        while tmp[0] == "#":
                            tmp = next(in_fd, "")

                        target_name = tmp.split("\t")[8].split(
                            ";")[1].split()[1]
                        if target_name not in ids:
                            writing_fd = filtered_out_gff_fd

                        else:
                            writing_fd = extracted_gff_fd
                        # print target_name
                        writing_fd.write(tmp)
                        while True:
                            tmp = next(in_fd, "")
                            if tmp == "# --- END OF GFF DUMP ---\n":
                                break
                            writing_fd.write(tmp)
                    if tmp == "":
                        break
        extracted_gff_fd.close()
        filtered_out_gff_fd.close()
Exemple #4
0
    def extract_top_hits_from_target_gff(list_of_target_gff,
                                         top_hits_gff,
                                         secondary_hits_gff,
                                         id_white_list_file=None,
                                         max_hits_per_query=None):
        if id_white_list_file:
            white_ids = IdList()
            white_ids.read(id_white_list_file)
        top_hits_gff_fd = open(top_hits_gff, "w")
        secondary_hits_gff_fd = open(secondary_hits_gff, "w")
        targets_list = []
        hit_counter = 0
        gene_counter = 0
        for filename in list_of_target_gff:
            index = 0
            with open(filename, "r") as in_fd:
                #print u
                #tmp = None
                for line in in_fd:
                    tmp = line
                    if tmp == "# --- START OF GFF DUMP ---\n":
                        # read until string with target_name will appear
                        while tmp[0] == "#":
                            tmp = next(in_fd, "")

                        target_name = tmp.split("\t")[8].split(
                            ";")[1].split()[1]
                        if id_white_list_file:
                            if target_name not in white_ids:
                                continue
                        if target_name not in targets_list:
                            writing_fd = top_hits_gff_fd
                            targets_list.append(target_name)
                            gene_counter += 1
                            hit_counter = 0
                        else:
                            writing_fd = secondary_hits_gff_fd
                        # print target_name
                        hit_counter += 1
                        tmp = tmp.replace(
                            "gene_id 0",
                            "gene_id g%i_h%i" % (gene_counter, hit_counter))
                        if hit_counter <= max_hits_per_query:
                            writing_fd.write(tmp)

                        while True:
                            tmp = next(in_fd, "")
                            # print("cccc")

                            if tmp == "# --- END OF GFF DUMP ---\n":
                                break
                            if max_hits_per_query:
                                if hit_counter > max_hits_per_query:
                                    #print "aaaaa"
                                    continue
                            writing_fd.write(tmp)
                    if tmp == "":
                        break
        top_hits_gff_fd.close()
        secondary_hits_gff_fd.close()
Exemple #5
0
    def extract_sequences_from_selected_clusters(
            self,
            clusters_id_file,
            cluster_file,
            seq_file,
            output_dir="./",
            seq_format="fasta",
            out_prefix=None,
            create_dir_for_each_cluster=False,
            skip_cluster_if_no_sequence_for_element=True):
        from Routines import SequenceRoutines, FileRoutines
        cluster_id_list = IdList()
        cluster_dict = SynDict()
        #print(pep_file)
        FileRoutines.safe_mkdir(output_dir)
        out_dir = FileRoutines.check_path(output_dir)
        create_directory_for_each_cluster = True if out_prefix else create_dir_for_each_cluster
        if clusters_id_file:
            cluster_id_list.read(clusters_id_file)
        cluster_dict.read(cluster_file,
                          split_values=True,
                          values_separator=",")
        protein_dict = SeqIO.index_db(
            "tmp.idx",
            FileRoutines.make_list_of_path_to_files(seq_file),
            format=seq_format)

        number_of_skipped_clusters = 0
        for fam_id in cluster_id_list if clusters_id_file else cluster_dict:

            if skip_cluster_if_no_sequence_for_element:
                absent_elements = self.check_absence_of_cluster_elements(
                    cluster_dict[fam_id], protein_dict)
                if absent_elements:
                    print "Skipping cluster %s due to absent element(%s)" % (
                        fam_id, ",".join(absent_elements))
                    number_of_skipped_clusters += 1
                    continue

            if fam_id in cluster_dict:
                if create_directory_for_each_cluster:
                    fam_dir = "%s%s/" % (out_dir, fam_id)
                    FileRoutines.safe_mkdir(fam_dir)
                    out_file = "%s%s.fasta" % (fam_dir, out_prefix
                                               if out_prefix else fam_id)
                else:
                    out_file = "%s/%s.fasta" % (out_dir, out_prefix
                                                if out_prefix else fam_id)

                SeqIO.write(SequenceRoutines.record_by_id_generator(
                    protein_dict, cluster_dict[fam_id], verbose=True),
                            out_file,
                            format=seq_format)

        os.remove("tmp.idx")
        print "%i of %i clusters were skipped due to absent elements" % (
            number_of_skipped_clusters, len(cluster_dict))

        return number_of_skipped_clusters
Exemple #6
0
    def create_per_cluster_element_id_files(self, cluster_dict,
                                            output_directory):
        self.safe_mkdir(output_directory)

        for cluster_id in cluster_dict:
            cluster_element_id_list = IdList(cluster_dict[cluster_id])
            cluster_element_id_list.write("%s/%s.ids" %
                                          (output_directory, cluster_id))
Exemple #7
0
 def _get_tree_dist_values(tree, expression=None):
     feature_values_list = IdList()
     for node in tree.traverse():
         if expression is not None:
             if not expression(node):
                 continue
         feature_values_list.append(node.dist)
     return feature_values_list
Exemple #8
0
    def filter_psl_by_ids_from_file(self, psl_file, output_file,
                                    white_query_id_file=None,
                                    black_query_id_file=None,
                                    white_target_id_file=None,
                                    black_target_id_file=None):

        self.filter_psl_by_ids(psl_file, output_file,
                               white_query_id_list=IdList(filename=white_query_id_file) if white_query_id_file else (),
                               black_query_id_list=IdList(filename=black_query_id_file) if black_query_id_file else (),
                               white_target_id_list=IdList(filename=white_target_id_file) if white_target_id_file else (),
                               black_target_id_list=IdList(filename=black_target_id_file) if black_target_id_file else ())
def handle_input(filename):
    sys.stdout.write("Handling %s\n" % filename)
    not_significant_ids = IdList()
    not_found_ids = IdList()

    prefix = split_filename(filename)[1]
    index_file = "%s.tmp.idx" % prefix
    hmm_dict = SearchIO.index_db(index_file, filename, args.format)
    if args.output == "stdout":
        out_fd = sys.stdout
    else:
        out_fd = open("%s%s.top_hits" % (args.top_hits_dir, prefix), "w")
        out_fd.write("#query\thit\tevalue\tbitscore\n")

    for query in hmm_dict:
        if hmm_dict[query].hits:
            if hmm_dict[query][0].is_included:
                out_fd.write(
                    "%s\t%s\t%s\t%s\n" %
                    (query, hmm_dict[query][0].id, hmm_dict[query][0].evalue,
                     hmm_dict[query][0].bitscore))
            else:
                not_significant_ids.append(query)
        else:
            not_found_ids.append(query)

    if args.output != "stdout":
        out_fd.close()

    os.remove(index_file)
    return not_significant_ids, not_found_ids
Exemple #10
0
    def combine_ds_dn_w_from_bootstrap_data(self, input_dir, output_dir, use_node_names_if_possible=True):

        dn_dir = "%s/dN/" % output_dir
        ds_dir = "%s/dS/" % output_dir
        w_dir = "%s/W/" % output_dir

        for directory in output_dir, dn_dir, ds_dir, w_dir:
            self.safe_mkdir(directory)

        input_files = map(lambda s: "%s/%s" % (input_dir, s), os.listdir(input_dir))

        data_dict = OrderedDict()
        for filename in input_files:
            with open(filename, "r") as in_fd:
                in_fd.readline()  # read header
                for line in in_fd:
                    node_id, node_name, dn, ds, w = line.strip().split("\t")

                    if use_node_names_if_possible:
                        node = node_id if node_name == "." else node_name
                    else:
                        node = node_id

                    if node not in data_dict:
                        data_dict[node] = OrderedDict()
                        for parameter in "dN", "dS", "W":
                            data_dict[node][parameter] = IdList()
                    data_dict[node]["dN"].append(dn)
                    data_dict[node]["dS"].append(ds)
                    data_dict[node]["W"].append(w)

        for node in data_dict:
            for parameter in "dN", "dS", "W":
                out_file = "%s/%s/%s.tsv" % (output_dir, parameter, node)
                data_dict[node][parameter].write(out_file)
Exemple #11
0
    def extract_entries_by_GO_from_eggnogmapper_output(
        eggnogmapper_output,
        GO_file,
        output_prefix,
        comments_prefix="#",
        separator="\t",
    ):

        GO_list = IdList(filename=GO_file, column_number=0)

        #print "GOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO"
        #print GO_list
        print(len(GO_list))

        extracted_entries_file = "%s.annotations" % output_prefix

        extracted_entries = 0

        with open(eggnogmapper_output, "r") as eggnog_fd:
            with open(extracted_entries_file, "w") as out_fd:
                for line in eggnog_fd:
                    if line[0] == comments_prefix:
                        out_fd.write(line)
                        continue
                    line_list = line.strip().split(separator)
                    entry_GO_list = line_list[5].split(",")
                    #print entry_GO_list
                    for GO in entry_GO_list:
                        if GO in GO_list:
                            out_fd.write(line)
                            extracted_entries += 1
                            break

        print("Extracted %i entries" % extracted_entries)
Exemple #12
0
    def extract_clusters_by_element_ids_from_file(self,
                                                  cluster_file,
                                                  element_file,
                                                  output_file,
                                                  mode="w",
                                                  cluster_column=0,
                                                  element_column=1,
                                                  column_separator="\t",
                                                  element_separator=",",
                                                  id_column=None):
        """"
        mode: "w" - if elements from element_id_list are present in cluster extracts only that elements
              "a" - if elements from element_id_list are present in cluster extracts all elements
        """
        cluster_dict = SynDict(filename=cluster_file,
                               split_values=True,
                               comments_prefix="#",
                               key_index=cluster_column,
                               value_index=element_column,
                               separator=column_separator,
                               values_separator=element_separator)

        element_id_list = IdList(filename=element_file,
                                 comments_prefix="#",
                                 column_number=id_column)
        extracted_clusters = self.extract_clusters_by_element_ids(
            cluster_dict, element_id_list, mode=mode)
        extracted_clusters.write(output_file, splited_values=True)
Exemple #13
0
    def extract_clusters_by_element_ids_from_file(self,
                                                  cluster_file,
                                                  element_file,
                                                  output_file,
                                                  mode="w"):
        """"
        mode: "w" - if elements from element_id_list are present in cluster extracts only that elements
              "a" - if elements from element_id_list are present in cluster extracts all elements
        """
        cluster_dict = SynDict()
        cluster_dict.read(cluster_file, split_values=True, comments_prefix="#")

        element_id_list = IdList()
        element_id_list.read(element_file, comments_prefix="#")
        extracted_clusters = self.extract_clusters_by_element_ids(
            cluster_dict, element_id_list, mode=mode)
        extracted_clusters.write(output_file, splited_values=True)
Exemple #14
0
    def extract_evidence_by_ids(evidence_file, id_file, output_evidence_file, mode="transcript"):
        # possible modes: transcript, gene
        ids = IdList()
        ids.read(id_file, comments_prefix="#")

        column_id = 0 if mode == "gene" else 1

        with open(evidence_file, "r") as ev_fd:
            with open(output_evidence_file, "w") as out_fd:
                for line in ev_fd:
                    if line[0] == "#":
                        out_fd.write(line)
                        continue

                    entry_id = line.split("\t")[column_id]
                    if entry_id in ids:
                        out_fd.write(line)
Exemple #15
0
 def extract_emapper_annotations_by_protein_ids(emapper_annotation_file,
                                                protein_id_file,
                                                output_annotations):
     protein_ids = IdList(filename=protein_id_file)
     with open(emapper_annotation_file, "r") as ann_fd:
         with open(output_annotations, "w") as out_fd:
             for line in ann_fd:
                 if line[0] == "#":
                     out_fd.write(line)
                     continue
                 if line.split("\t")[0] in protein_ids:
                     out_fd.write(line)
Exemple #16
0
    def add_length_to_accordance_file(accordance_file, length_file, output_prefix):

        accordance_dict = SynDict(filename=accordance_file, allow_repeats_of_key=True)
        length_dict = SynDict(filename=length_file, expression=int)
        print length_dict
        longest_list = IdList()

        all_output_file = "%s.all.correspondence" % output_prefix
        longest_output_file = "%s.longest.correspondence" % output_prefix
        longest_id_file = "%s.longest.ids" % output_prefix

        with open(all_output_file, "w") as all_out_fd:
            with open(longest_output_file, "w") as longest_out_fd:
                for gene in accordance_dict:
                    current_transcript = None
                    current_length = 0
                    for transcript in accordance_dict[gene]:
                        if length_dict[transcript] > current_length:
                            current_transcript = transcript
                            current_length = length_dict[transcript]
                        all_out_fd.write("%s\t%s\t%i\n" % (gene, transcript, length_dict[transcript]))

                    longest_out_fd.write("%s\t%s\t%i\n" % (gene, current_transcript, current_length))
                    longest_list.append(current_transcript)
        longest_list.write(longest_id_file)
Exemple #17
0
    def extract_counts_by_max_level(input_file, output_prefix,
                                   separator="\t", verbose=True):
        output_file = "%s.divided_by_maxlvl" % output_prefix
        zero_max_lvl_list = IdList()

        zero_max_lvl_list_file = "%s.zero_max_lvl.ids" % output_prefix

        with open(input_file, "r") as in_fd:
            header = in_fd.readline()
            header_list = header.strip().split(separator)
            with open(output_file, "w") as out_fd:
                out_fd.write(header)
                for line in in_fd:
                    tmp_line = line.strip().split(separator)
                    data = np.array(map(float, tmp_line[1:]))
                    max_level = max(data)
                    if max_level == 0:
                        zero_max_lvl_list.append(tmp_line[0])

                        if verbose:
                            print("Zero max level for %s...Skipping..." % tmp_line[0])
                        continue

                    data /= max_level
                    output_string = tmp_line[0] + "\t"
                    output_string += "\t".join(map(str, data))
                    output_string += "\n"
                    out_fd.write(output_string)

        zero_max_lvl_list.write(zero_max_lvl_list_file)
Exemple #18
0
    def extract_proteins_from_selected_families(
            families_id_file,
            fam_file,
            pep_file,
            output_dir="./",
            pep_format="fasta",
            out_prefix=None,
            create_dir_for_each_family=False):
        from Routines import SequenceRoutines, FileRoutines
        fam_id_list = IdList()
        fam_dict = SynDict()
        #print(pep_file)
        FileRoutines.safe_mkdir(output_dir)
        out_dir = FileRoutines.check_path(output_dir)
        create_directory_for_each_family = True if out_prefix else create_dir_for_each_family
        if families_id_file:
            fam_id_list.read(families_id_file)
        fam_dict.read(fam_file, split_values=True, values_separator=",")
        protein_dict = SeqIO.index_db("tmp.idx", pep_file, format=pep_format)

        for fam_id in fam_id_list if families_id_file else fam_dict:
            if fam_id in fam_dict:
                if create_directory_for_each_family:
                    fam_dir = "%s%s/" % (out_dir, fam_id)
                    FileRoutines.safe_mkdir(fam_dir)
                    out_file = "%s%s.pep" % (fam_dir, out_prefix
                                             if out_prefix else fam_id)
                else:
                    out_file = "%s/%s.pep" % (out_dir, out_prefix
                                              if out_prefix else fam_id)

                SeqIO.write(SequenceRoutines.record_by_id_generator(
                    protein_dict, fam_dict[fam_id], verbose=True),
                            out_file,
                            format=pep_format)
            else:
                print("%s was not found" % fam_id)

        os.remove("tmp.idx")
Exemple #19
0
    def cluster_sequence_names_by_id_fragment_from_file(
            self,
            seq_id_file,
            id_element_index,
            id_separator="_",
            output_prefix=None):

        seq_id_list = IdList(filename=seq_id_file)

        self.cluster_sequence_names_by_id_fragment(seq_id_list,
                                                   id_element_index,
                                                   id_separator=id_separator,
                                                   output_prefix=output_prefix)
Exemple #20
0
 def extract_ids_from_file(input_file, output_file=None, header=False, column_separator="\t",
                           comments_prefix="#", column_number=None):
     id_list = IdList()
     id_list.read(input_file, column_separator=column_separator, comments_prefix=comments_prefix,
                  column_number=column_number, header=header)
     if output_file:
         id_list.write(output_file, header=header)
     return id_list
Exemple #21
0
    def remove_elements_by_ids_from_files(self,
                                          input_file,
                                          output_file,
                                          black_list_file,
                                          mode="full"):

        cluster_dict = SynDict(filename=input_file, split_values=True)
        black_list = IdList(filename=black_list_file)

        filtered_dict = self.remove_elements_by_ids(cluster_dict,
                                                    black_list,
                                                    mode=mode)

        filtered_dict.write(output_file, splited_values=True)
Exemple #22
0
 def convert_gff_to_simple_bed(input_gff, output_bed, feature_type_list=[], scaffold_id_file=None):
     if scaffold_id_file:
         scaffolds_id_list = IdList(filename=scaffold_id_file)
     with open(input_gff, "r") as gff_fd:
         with open(output_bed, "w") as bed_fd:
             for line in gff_fd:
                 if line[0] == "#":
                     continue
                 tmp_list = line.strip().split("\t")
                 if scaffold_id_file:
                     if tmp_list[0] not in scaffolds_id_list:
                         continue
                 if feature_type_list:
                     if tmp_list[2] not in feature_type_list:
                         continue
                 bed_fd.write("%s\t%s\t%s\n" % (tmp_list[0], tmp_list[3], tmp_list[4]))
Exemple #23
0
    def extract_clusters_and_elements_by_labels_from_files(
            self,
            cluster_file,
            label_file,
            output_file,
            separator="@",
            label_position="first"):
        cluster_dict = SynDict(filename=cluster_file, split_values=True)
        label_list = IdList(
            filename=label_file) if isinstance(label_file, str) else label_file

        output_dict = self.extract_clusters_and_elements_by_labels(
            cluster_dict,
            label_list,
            separator=separator,
            label_position=label_position)

        output_dict.write(output_file, splited_values=True)
Exemple #24
0
    def divide_counts_by_several_base_level(input_file, output_prefix, base_levels,
                                            separator="\t", verbose=True,
                                            max_ratio_to_base_lvl=0.5):
        output_file = "%s.divided_by_max_baselvl" % output_prefix
        max_ratio_to_base_lvl_file = "%s.divided_by_max_baselvl.max_%f_ratio" % (output_prefix, max_ratio_to_base_lvl)
        zero_max_base_lvl_list = IdList()
        zero_max_base_lvl_list_file = "%s.zero_base_lvls.ids" % output_prefix
        max_ratio_to_base_lvl_fd = open(max_ratio_to_base_lvl_file, "w")
        with open(input_file, "r") as in_fd:
            header = in_fd.readline()
            header_list = header.strip().split(separator)

            data_base_lvl_index_list = []
            base_level_list = [base_levels] if isinstance(base_levels, str) else base_levels
            for level in base_level_list:
                data_base_lvl_index_list.append(header_list.index(level) - 1)

            with open(output_file, "w") as out_fd:
                out_fd.write(header)
                max_ratio_to_base_lvl_fd.write(header)
                for line in in_fd:
                    tmp_line = line.strip().split(separator)
                    data = np.array(map(float, tmp_line[1:]))
                    max_base_lvl = max(np.take(data, data_base_lvl_index_list))
                    if max_base_lvl == 0:
                        zero_max_base_lvl_list.append(tmp_line[0])
                        if verbose:
                            print("Zero max base level(s) for %s...Skipping..." % tmp_line[0])
                        continue

                    data /= max_base_lvl
                    output_string = tmp_line[0] + "\t"
                    output_string += "\t".join(map(str, data))
                    output_string += "\n"
                    if max(np.delete(data, data_base_lvl_index_list)) <= max_ratio_to_base_lvl:
                        max_ratio_to_base_lvl_fd.write(output_string)
                    out_fd.write(output_string)

        zero_max_base_lvl_list.write(zero_max_base_lvl_list_file)
        max_ratio_to_base_lvl_fd.close()
Exemple #25
0
    def extract_eggnog_fam_by_protein_syn_dict(self, eggnog_fam_dict, protein_syn_dict, output_prefix=None, species_id=None):

        extracted_families = SynDict()
        common_protein_names_to_families_dict = SynDict()
        common_names_to_eggnog_proteins_syn_dict = SynDict()

        not_found_proteins_common_names = IdList()

        transposed_eggnog_fam_dict = eggnog_fam_dict.exchange_key_and_value()

        for common_protein_name in protein_syn_dict:
            not_found = True
            for protein_id in protein_syn_dict[common_protein_name]:
                extended_protein_id = protein_id if species_id is None else species_id + "." + protein_id
                if extended_protein_id in transposed_eggnog_fam_dict:
                    not_found = False
                    if common_protein_name not in common_protein_names_to_families_dict:
                        common_protein_names_to_families_dict[common_protein_name] = [transposed_eggnog_fam_dict[extended_protein_id][0]]
                        common_names_to_eggnog_proteins_syn_dict[common_protein_name] = [extended_protein_id]
                    else:
                        common_protein_names_to_families_dict[common_protein_name].append(transposed_eggnog_fam_dict[extended_protein_id][0])
                        common_names_to_eggnog_proteins_syn_dict[common_protein_name].append(extended_protein_id)
                    if transposed_eggnog_fam_dict[extended_protein_id][0] not in extracted_families:
                        extracted_families[transposed_eggnog_fam_dict[extended_protein_id][0]] = eggnog_fam_dict[transposed_eggnog_fam_dict[extended_protein_id][0]]

            if not_found:
                not_found_proteins_common_names.append(common_protein_name)

        if output_prefix:
            extracted_families.write(filename="%s.extracted_families.fam" % output_prefix, splited_values=True)
            common_protein_names_to_families_dict.write(filename="%s.common_protein_names_to_families.correspondence" % output_prefix, splited_values=True)
            common_names_to_eggnog_proteins_syn_dict.write(filename="%s.common_protein_names_to_eggnog_proteins.correspondence" % output_prefix, splited_values=True)
            not_found_proteins_common_names.write(filename="%s.not_found.common_names" % output_prefix)

            #print common_names_to_eggnog_proteins_syn_dict
            #print common_protein_names_to_families_dict
        return extracted_families, common_protein_names_to_families_dict, \
               common_names_to_eggnog_proteins_syn_dict, not_found_proteins_common_names
Exemple #26
0
    def cluster_sequence_names_by_id_fragment(self,
                                              seq_id_list,
                                              id_element_index,
                                              id_separator="_",
                                              output_prefix=None):
        cluster_dict = SynDict()
        skipped_id_list = IdList()

        for seq_id in seq_id_list:
            seq_id_splited = seq_id.split(id_separator)
            if id_element_index < len(seq_id_splited):
                if seq_id_list[id_element_index] in cluster_dict:
                    cluster_dict[seq_id_list[id_element_index]].append(seq_id)
                else:
                    cluster_dict[seq_id_list[id_element_index]] = [seq_id]
            else:
                skipped_id_list.append(seq_id)

        if output_prefix:
            cluster_dict.write("%s.seqid.clusters" % output_prefix,
                               splited_values=True)
            skipped_id_list.write("%s.seqid.skipped.ids" % output_prefix)

        return cluster_dict
parser.add_argument("-o",
                    "--output_file",
                    action="store",
                    dest="output_file",
                    help="Output file with extracted_annotations")
parser.add_argument("-d",
                    "--ids_file",
                    action="store",
                    dest="ids_file",
                    help="File with ids of annotations to extract")
parser.add_argument("-t",
                    "--annotation_types",
                    action="store",
                    dest="annotation_types",
                    default=["gene"],
                    type=lambda s: s.split(","),
                    help="Comma-separated list of annotation types to extract")

args = parser.parse_args()

annotation_ids = IdList()
annotation_ids.read(args.ids_file, comments_prefix="#")
#print args.annotation_types
out_fd = open(args.output_file, "w")

GFF.write(
    record_with_extracted_annotations_generator(args.input_gff,
                                                args.annotation_types), out_fd)

out_fd.close()
                    action="store",
                    dest="input",
                    required=True,
                    help="Input .gff file")
parser.add_argument("-o",
                    "--output_prefix",
                    action="store",
                    dest="output",
                    default="stdout",
                    help="Output file with single exon genes. Default: stdout")

args = parser.parse_args()

out_fd = sys.stdout if args.output == "stdout" else open(args.output, "w")
annotations_dict = SeqIO.to_dict(GFF.parse(open(args.input)))
single_gene_id_list = IdList()

for record in annotations_dict:
    for feature in annotations_dict[record].features:
        #print feature.id
        if feature.type != "gene":
            continue
        for subfeature in feature.sub_features:
            if subfeature.type != "mRNA":
                continue
            exon_number = 0
            for mRNA_subfeature in subfeature.sub_features:
                if mRNA_subfeature.type == "exon":
                    exon_number += 1
            if exon_number == 1:
                single_gene_id_list.append(feature.id)
Exemple #29
0
    def check_gvcf_integrity(self, gvcf_file, output_prefix, reference=None, length_dict=None, parsing_mode="parse"):
        len_dict = length_dict if length_dict else self.get_lengths(record_dict=self.parse_seq_file(reference,
                                                                                                    mode=parsing_mode),
                                                                    out_file=None,
                                                                    close_after_if_file_object=False)

        scaffold_dict = OrderedDict()

        with self.metaopen(gvcf_file, "r") as gvcf_fd:
            prev_scaffold = ""

            for line in gvcf_fd:
                #print line
                if line[0] == "#":
                    continue

                line_list = line.split("\t")
                scaffold = line_list[0]
                start = int(line_list[1])
                format = line_list[7].split(";")

                if (len(format) == 1) and (format[0][0:3] == "END"):
                    end = int(format[0].split("=")[1])
                else:
                    end = start + len(line_list[3]) - 1
                #print line_list
                #print scaffold, start, end, format

                if scaffold not in scaffold_dict:
                    scaffold_dict[scaffold] = []

                if scaffold != prev_scaffold:
                    scaffold_dict[scaffold].append([deepcopy(start), deepcopy(end)])
                else:
                    #print scaffold_dict[scaffold][-1][1]
                    if scaffold_dict[scaffold][-1][1] + 1 >= start:
                        scaffold_dict[scaffold][-1][1] = deepcopy(max(end, scaffold_dict[scaffold][-1][1]))
                    else:
                        print scaffold_dict[scaffold]
                        print line
                        scaffold_dict[scaffold].append([deepcopy(start), deepcopy(end)])
                prev_scaffold = scaffold

        complete_scaffolds = IdList()
        fragmented_scaffolds = IdList()
        scaffolds_with_absent_fragments = IdList()

        with open("%s.scaffold_regions" % output_prefix, "w") as scaf_reg_fd:

            for scaffold in scaffold_dict:
                if len(scaffold_dict[scaffold]) > 1:
                    fragmented_scaffolds.append(scaffold)

                scaffold_length = sum(map(lambda s: s[1] - s[0] + 1, scaffold_dict[scaffold]))
                if scaffold_length != len_dict[scaffold]:
                    scaffolds_with_absent_fragments.append(scaffold)
                else:
                    complete_scaffolds.append(scaffold)
                scaf_reg_fd.write("%s\t%s\n" % (scaffold, ",".join(map(lambda s: "-".join(map(str,s)), scaffold_dict[scaffold]))))

        complete_scaffolds.write("%s.complete_scaffolds" % output_prefix)
        fragmented_scaffolds.write("%s.fragmented_scaffolds" % output_prefix)
        scaffolds_with_absent_fragments.write("%s.scaffolds_with_absent_fragments" % output_prefix)
                    help="Output .gff file")
parser.add_argument("-d",
                    "--id_file",
                    action="store",
                    dest="id_file",
                    required=True,
                    help="File with ids of genes to extract")
parser.add_argument("-w",
                    "--write_comments",
                    action="store_true",
                    dest="write_comments",
                    help="Write comments to output")

args = parser.parse_args()

feature_id_list = IdList()
feature_id_list.read(args.id_file)

with open(args.input, "r") as in_fd:
    with open(args.output, "w") as out_fd:
        for line in in_fd:
            if (line[0] == "#") and args.write_comments:
                out_fd.write(line)
                continue
            description_list = line.split("\t")[9].split(";")
            feature_id = description_list[0].split("=")[1]
            if feature_id not in feature_id_list:
                continue
            out_fd.write(line)
            while True:
                description_list = in_fd.next().split("\t")[9].split(";")