def test_generic_compute_Lx_batches(): ## now compare against theano version vv = T.matrix() gg = T.matrix() hh = T.matrix() aa = T.vector() bb = T.vector() cc = T.vector() xxw_mat = T.matrix() xxv_mat = T.matrix() xxw = T.vector() xxv = T.vector() xxa = T.vector() xxb = T.vector() xxc = T.vector() # test compute_Lx LLx = natural.generic_compute_Lx_batches([vv, gg, hh], [xxw_mat, xxv_mat], [xxa, xxb, xxc], 256, 64) f = theano.function([vv, gg, hh, xxw_mat, xxv_mat, xxa, xxb, xxc], LLx) t1 = time.time() rvals = f(v, g, h, xw_mat, xv_mat, xa, xb, xc) print 'Elapsed: ', time.time() - t1 numpy.testing.assert_almost_equal(Lx_w, rvals[0], decimal=3) numpy.testing.assert_almost_equal(Lx_v, rvals[1], decimal=3) numpy.testing.assert_almost_equal(Lx_a, rvals[2], decimal=3) numpy.testing.assert_almost_equal(Lx_b, rvals[3], decimal=3) numpy.testing.assert_almost_equal(Lx_c, rvals[4], decimal=3)
def test_generic_compute_Lx_batches(): ## now compare against theano version vv = T.matrix() gg = T.matrix() hh = T.matrix() qq = T.matrix() aa = T.vector() bb = T.vector() cc = T.vector() dd = T.vector() xxw_mat = T.matrix() xxv_mat = T.matrix() xxz_mat = T.matrix() xxw = T.vector() xxv = T.vector() xxa = T.vector() xxb = T.vector() xxc = T.vector() xxd = T.vector() # test compute_Lx LLx = natural.generic_compute_Lx_batches([vv, gg, hh, qq], [xxw_mat, xxv_mat, xxz_mat], [xxa, xxb, xxc, xxd], 256, 64) f = theano.function( [vv, gg, hh, qq, xxw_mat, xxv_mat, xxz_mat, xxa, xxb, xxc, xxd], LLx) rvals = f(v, g, h, q, xw_mat, xv_mat, xz_mat, xa, xb, xc, xd) numpy.testing.assert_almost_equal(Lx_w, rvals[0], decimal=3) numpy.testing.assert_almost_equal(Lx_v, rvals[1], decimal=3) numpy.testing.assert_almost_equal(Lx_z, rvals[2], decimal=3) numpy.testing.assert_almost_equal(Lx_a, rvals[3], decimal=3) numpy.testing.assert_almost_equal(Lx_b, rvals[4], decimal=3) numpy.testing.assert_almost_equal(Lx_c, rvals[5], decimal=3) numpy.testing.assert_almost_equal(Lx_d, rvals[6], decimal=3)
def test_generic_compute_Lx_batches(): ## now compare against theano version vv = T.matrix() gg = T.matrix() hh = T.matrix() qq = T.matrix() aa = T.vector() bb = T.vector() cc = T.vector() dd = T.vector() xxw_mat = T.matrix() xxv_mat = T.matrix() xxz_mat = T.matrix() xxw = T.vector() xxv = T.vector() xxa = T.vector() xxb = T.vector() xxc = T.vector() xxd = T.vector() # test compute_Lx LLx = natural.generic_compute_Lx_batches([vv, gg, hh, qq], [xxw_mat, xxv_mat, xxz_mat], [xxa, xxb, xxc, xxd], 256, 64) f = theano.function([vv, gg, hh, qq, xxw_mat, xxv_mat, xxz_mat, xxa, xxb, xxc, xxd], LLx) rvals = f(v, g, h, q, xw_mat, xv_mat, xz_mat, xa, xb, xc, xd) numpy.testing.assert_almost_equal(Lx_w, rvals[0], decimal=3) numpy.testing.assert_almost_equal(Lx_v, rvals[1], decimal=3) numpy.testing.assert_almost_equal(Lx_z, rvals[2], decimal=3) numpy.testing.assert_almost_equal(Lx_a, rvals[3], decimal=3) numpy.testing.assert_almost_equal(Lx_b, rvals[4], decimal=3) numpy.testing.assert_almost_equal(Lx_c, rvals[5], decimal=3) numpy.testing.assert_almost_equal(Lx_d, rvals[6], decimal=3)