Exemple #1
0
                                    fun=model_covid_predictions,
                                    y0=x_0_cases,
                                    t_span=[
                                        t_predictions[0], t_predictions[-1]
                                    ],
                                    t_eval=t_predictions,
                                    args=tuple(optimal_params),
                                ).y
                                return x_sol_best

                            x_sol_final = solve_best_params_and_predict(
                                best_params)
                            data_creator = DELPHIDataCreator(
                                x_sol_final=x_sol_final,
                                date_day_since100=date_day_since100,
                                best_params=best_params,
                                continent=continent,
                                country=country,
                                province=province,
                            )
                            # Creating the parameters dataset for this (Continent, Country, Province)
                            mape_data = (
                                mape(fitcasesnd,
                                     x_sol_final[15, :len(fitcasesnd)]) +
                                mape(fitcasesd,
                                     x_sol_final[14, :len(fitcasesd)])) / 2
                            try:
                                mape_data_2 = (
                                    mape(
                                        fitcasesnd[-15:],
                                        x_sol_final[15,
                                                    len(fitcasesnd) -
Exemple #2
0
                x_0_cases = get_initial_conditions(
                    params_fitted=optimal_params,
                    global_params_fixed=GLOBAL_PARAMS_FIXED
                )
                x_sol_best = solve_ivp(
                    fun=model_covid,
                    y0=x_0_cases,
                    t_span=[t_predictions[0], t_predictions[-1]],
                    t_eval=t_predictions,
                    args=tuple(optimal_params),
                ).y
                return x_sol_best

            x_sol_final = solve_best_params_and_predict(best_params)
            data_creator = DELPHIDataCreator(
                x_sol_final=x_sol_final, date_day_since100=date_day_since100, best_params=best_params,
                continent=continent, country=country, province=province, testing_data_included=False
            )
            # Creating the parameters dataset for this (Continent, Country, Province)
            # mape_data = (
            #                     mape(fitcasesnd, x_sol_final[15, :len(fitcasesnd)]) +
            #                     mape(fitcasesd, x_sol_final[14, :len(fitcasesd)])
            #             ) / 2
            if len(fitcasesnd)> 15:
                mape_data_2 = (
                        mape(fitcasesnd[-15:], x_sol_final[15, len(fitcasesnd)-15:len(fitcasesnd)]) +
                        mape(fitcasesd[-15:], x_sol_final[14, len(fitcasesnd)-15:len(fitcasesd)])
                ) / 2
                print(mape_data_2)
            df_parameters_cont_country_prov = data_creator.create_dataset_parameters(mape_data_2)
            list_df_global_parameters.append(df_parameters_cont_country_prov)
            # Creating the datasets for predictions of this (Continent, Country, Province)
                            params_fitted=optimal_params,
                            global_params_fixed=GLOBAL_PARAMS_FIXED)
                        x_sol_best = solve_ivp(
                            fun=model_covid_predictions,
                            y0=x_0_cases,
                            t_span=[t_predictions[0], t_predictions[-1]],
                            t_eval=t_predictions,
                            args=tuple(optimal_params),
                        ).y
                        return x_sol_best

                    x_sol_final = solve_best_params_and_predict(best_params)
                    data_creator = DELPHIDataCreator(
                        x_sol_final=x_sol_final,
                        date_day_since100=date_day_since100,
                        best_params=best_params,
                        continent=continent,
                        country=country,
                        province=province,
                    )
                    # Creating the parameters dataset for this (Continent, Country, Province)
                    mape_data = (
                        mape(fitcasesnd, x_sol_final[15, :len(fitcasesnd)]) +
                        mape(fitcasesd, x_sol_final[14, :len(fitcasesd)])) / 2
                    mape_data_2 = (mape(
                        fitcasesnd[-15:], x_sol_final[
                            15, len(fitcasesnd) - 15:len(fitcasesnd)]) + mape(
                                fitcasesd[-15:], x_sol_final[
                                    14,
                                    len(fitcasesnd) - 15:len(fitcasesd)])) / 2
                    print("Policy: ", future_policy, "\t Enacting Time: ",
                          future_time, "\t Total MAPE=", mape_data,
Exemple #4
0
                    params_fitted=optimal_params,
                    global_params_fixed=GLOBAL_PARAMS_FIXED)
                x_sol_best = solve_ivp(
                    fun=model_covid,
                    y0=x_0_cases,
                    t_span=[t_cases_all[0], t_cases_all[-1]],
                    t_eval=t_cases_all,
                    args=tuple(optimal_params),
                ).y
                return x_sol_best

            x_sol_final = solve_best_params_and_predict(best_params)
            data_creator = DELPHIDataCreator(
                x_sol_final=x_sol_final,
                date_day_since100=date_day_since100,
                best_params=best_params,
                continent=continent,
                country=country,
                province=province,
            )
            df_backtest_performance_tuple = data_creator.create_df_backtest_performance_tuple(
                fitcasesnd=fitcasesnd,
                fitcasesd=fitcasesd,
                testcasesnd=testcasesnd,
                testcasesd=testcasesd,
                n_days_fitting=n_days_fitting,
                n_days_test=n_days_test,
            )
            # Appending the dataset for backtest performance of this (Continent, Country, Province)
            list_df_backtest_performance.append(df_backtest_performance_tuple)
            print(
                f"Finished backtesting for Continent={continent}, Country={country}, Province={province}"