Exemple #1
0
    def noise_map(self):
        '''
        compute the variance of a set of map for u, v, exx, eyy, exy, eeq
        :return su,sv,sexx,seyy,sexy,seeq:
        :rtype su,sv,sexx,seyy,sexy,seeq: im2d.image2d
        '''
        l, c = np.shape(self.u[0].field)
        st11 = np.zeros((l, c, len(self.u)))
        st22 = np.zeros((l, c, len(self.u)))
        st12 = np.zeros((l, c, len(self.u)))
        steq = np.zeros((l, c, len(self.u)))
        su = np.zeros((l, c, len(self.u)))
        sv = np.zeros((l, c, len(self.u)))

        for i in list(range(len(self.u))):
            st11[:, :, i] = self.strain[i].t11.field
            st22[:, :, i] = self.strain[i].t22.field
            st12[:, :, i] = self.strain[i].t12.field
            su[:, :, i] = self.u[i].field
            sv[:, :, i] = self.v[i].field
            steq[:, :, i] = self.strain[i].eqVonMises().field

        return im2d.image2d(np.nanstd(su, axis=2),
                            self.micro.res), im2d.image2d(
                                np.nanstd(sv, axis=2),
                                self.micro.res), im2d.image2d(
                                    np.nanstd(st11, axis=2),
                                    self.micro.res), im2d.image2d(
                                        np.nanstd(st22, axis=2),
                                        self.micro.res), im2d.image2d(
                                            np.nanstd(st12, axis=2),
                                            self.micro.res), im2d.image2d(
                                                np.nanstd(steq, axis=2),
                                                self.micro.res)
Exemple #2
0
    def __init__(self, adr_data, resolution, time_step, adr_micro=0):
        '''
        :param adr_data: folder path where the 7D output are store
        :type adr_data: str
        :param resolution: pixel size of the image used for DIC (millimeters)
        :type resolution: float
        :param time_step: time step between the picture (seconds)
        :type time_step: float
        :param adr_micro: path for the black and white skeleton of the microstructure (bmp format) (default 0 - no microstructure)
        :type adr_micro: str
        '''

        # include time_step in the object
        self.time = time_step

        # find out file from 7D
        output = os.listdir(adr_data)
        output.sort()
        # loop on all the output
        self.u = []
        self.v = []
        self.strain = []
        self.oxy = []
        for i in list(range(len(output))):
            # load the file
            data = np.loadtxt(adr_data + '/' + output[i])
            # find not indexed point
            id = np.where(data[:, 4] != 0.0)
            # replace not indexed point by NaN value
            data[id, 2:4] = np.NaN
            data[id, 5:8] = np.NaN
            # for the first step it extract size sx,sy and window correlation value used in 7D
            if (i == 0):
                n_dic = np.abs(data[0, 1] - data[1, 1])
                nb_pix = np.size(data[:, 0])
                sx = np.int32(
                    np.abs(data[0, 0] - data[nb_pix - 1, 0]) / n_dic + 1)
                sy = np.int32(
                    np.abs(data[0, 1] - data[nb_pix - 1, 1]) / n_dic + 1)
            # Build image at time t=i
            self.u.append(
                im2d.image2d(
                    np.transpose(np.reshape(data[:, 2] * resolution,
                                            [sx, sy])), n_dic * resolution))
            self.v.append(
                im2d.image2d(
                    np.transpose(np.reshape(data[:, 3] * resolution,
                                            [sx, sy])), n_dic * resolution))
            exx = im2d.image2d(np.transpose(np.reshape(data[:, 5], [sx, sy])),
                               n_dic * resolution)
            eyy = im2d.image2d(np.transpose(np.reshape(data[:, 6], [sx, sy])),
                               n_dic * resolution)
            exy = im2d.image2d(np.transpose(np.reshape(data[:, 7], [sx, sy])),
                               n_dic * resolution)
            if i == 0:
                eaz = im2d.image2d(np.zeros([sy, sx]), n_dic * resolution)

            self.strain.append(
                sTM.symetricTensorMap(exx, eyy, eaz, exy, eaz, eaz))
            self.oxy.append((self.u[i].diff('y') - self.v[i].diff('x')) * .5)

        minx = np.int32(np.min(data[:, 0]) / n_dic) - 1
        maxx = np.int32(np.max(data[:, 0]) / n_dic)
        miny = np.int32(np.min(-data[:, 1]) / n_dic) - 1
        maxy = np.int32(np.max(-data[:, 1]) / n_dic)

        # open the microstructure
        if adr_micro == 0:
            self.micro = im2d.micro2d(np.zeros([sy, sx]), n_dic * resolution)
        else:
            micro_bmp = io.imread(adr_micro)
            self.micro = im2d.micro2d(
                micro_bmp[miny:maxy, minx:maxx, 0] / np.max(micro_bmp),
                n_dic * resolution)

        self.grains = self.micro.grain_label()

        # replace grains boundary with NaN number
        self.grains.field = np.array(self.grains.field, float)
        idx = np.where(self.micro.field == 1)
        self.grains.field[idx] = np.nan
Exemple #3
0
def loadDICe(adr_data, resolution, time_step, adr_micro=0, strain_com=1):
    '''
        :param adr_data: folder path where the 7D output are store
        :type adr_data: str
        :param resolution: pixel size of the image used for DIC (millimeters)
        :type resolution: float
        :param time_step: time step between the picture (seconds)
        :type time_step: float
        :param adr_micro: path for the black and white skeleton of the microstructure (bmp format) (default 0 - no microstructure)
        :type adr_micro: str
        :param strain_com: Computation method for strain calculation 0-small deformation 1-Green Lagrange (default 1)
        :type strain_com: bool
        '''

    # include time_step in the object
    time = time_step

    # find out file from 7D
    output = os.listdir(adr_data + 'results/')
    output.sort()
    output = output[2:-1]
    # loop on all the output
    u = []
    v = []
    strain = []
    oxy = []
    for i in list(range(len(output))):
        # load the file
        data = np.loadtxt(adr_data + 'results/' + output[i],
                          skiprows=1,
                          delimiter=',',
                          usecols=[1, 2, 3, 4, 9])
        # find not indexed point
        id = np.where(data[:, -1] == 0)
        # replace not indexed point by NaN value
        data[id[0], 2] = np.NaN
        data[id[0], 3] = np.NaN
        # for the first step it extract size sx,sy and window correlation value used in 7D
        if (i == 0):
            n_dic = np.abs(data[0, 1] - data[1, 1])
            nb_pix = np.size(data[:, 0])
            sx = np.int32(1 + np.abs(np.min(data[:, 0]) - np.max(data[:, 0])) /
                          n_dic)
            sy = np.int32(1 + np.abs(np.min(data[:, 1]) - np.max(data[:, 1])) /
                          n_dic)
        # Build image at time t=i
        tmp_u = np.zeros([sx, sy])
        tmp_u[:, :] = np.NaN
        tmp_v = np.zeros([sx, sy])
        tmp_v[:, :] = np.NaN
        # find x y position in the table
        x = (data[:, 0] - np.min(data[:, 0])) / n_dic
        y = (data[:, 1] - np.min(data[:, 1])) / n_dic
        # include data
        tmp_u[x.astype(int), y.astype(int)] = data[:, 2]
        tmp_v[x.astype(int), y.astype(int)] = data[:, 3]
        # Create im2d data object u and v
        imu = im2d.image2d(np.transpose(tmp_u * resolution),
                           n_dic * resolution)
        imv = im2d.image2d(np.transpose(tmp_v * resolution),
                           n_dic * resolution)
        # compute Strain
        if strain_com == 0:
            exx = imu.diff('x')
            eyy = imv.diff('y')
            exy = (imu.diff('y') + imv.diff('x')) * 0.5
            tmp_oxy = (imu.diff('y') - imv.diff('x')) * 0.5
        elif strain_com == 1:
            exx = (imu.diff('x') +
                   (imu.diff('x').pow(2) + imv.diff('x').pow(2)) * 0.5)
            eyy = (imv.diff('y') +
                   (imu.diff('y').pow(2) + imv.diff('y').pow(2)) * 0.5)
            exy = ((imu.diff('y') + imv.diff('x')) * 0.5 +
                   (imu.diff('x') * imu.diff('y') +
                    imv.diff('x') * imv.diff('y')) * 0.5)
            tmp_oxy = (
                imu.diff('y') - imv.diff('x')
            ) * 0.5  #+(imu.diff('x')*imu.diff('y')-imv.diff('x')*imv.diff('y'))*0.5

        u.append(imu)
        v.append(imv)
        # faxe componante to use 3D strain tensor object
        if i == 0:
            eaz = im2d.image2d(np.zeros([sy - 1, sx - 1]), n_dic * resolution)

        exx.field = -exx.field
        eyy.field = -eyy.field
        exy.field = -exy.field
        strain.append(sTM.symetricTensorMap(exx, eyy, eaz, exy, eaz, eaz))
        oxy.append(tmp_oxy)

    minx = np.int32(np.min(data[:, 0]) / n_dic) - 1
    maxx = np.int32(np.max(data[:, 0]) / n_dic)
    miny = np.int32(np.min(-data[:, 1]) / n_dic) - 1
    maxy = np.int32(np.max(-data[:, 1]) / n_dic)

    # open the microstructure
    if adr_micro == 0:
        micro = im2d.micro2d(np.zeros([sy, sx]), n_dic * resolution)
    else:
        micro_bmp = io.imread(adr_micro)
        micro = im2d.micro2d(
            micro_bmp[miny:maxy, minx:maxx, 0] / np.max(micro_bmp),
            n_dic * resolution)

    grains = micro.grain_label()

    # replace grains boundary with NaN number
    grains.field = np.array(grains.field, float)
    idx = np.where(micro.field == 1)
    grains.field[idx] = np.nan

    return dic.dic(time, u, v, strain, oxy, micro, grains)